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Chapter 1

Week 1

1.1 What is a time series?
In classical statistics, we normally consider 𝑋1, … , 𝑋𝑛 ∈ R𝑝, a simple random sample.

In particular,

(1) 𝑋1, … , 𝑋𝑛 are i.i.d. (independent and identically distributed)

(2) 𝑋𝑖 ∼ 𝐹𝜃 which is a common distribution characterized by 𝜃.

Examples:

1. 𝑋𝑖
iid∼ 𝒩(𝜇, 𝜎2), and we wish to estimate and perform inference on 𝜇 and 𝜎2.

2. 𝑋𝑖 = [𝑌𝑖
𝑍𝑖

] where 𝑌𝑖 is a dependent variable, and 𝑍𝑖 is an independent variable. Perhaps we happen to

observe 𝑌𝑖 and 𝑍𝑖 in pairs, and we posit a model:

𝑌𝑖 = 𝛽⊤𝑍𝑖 + 𝜀𝑖, 𝜀𝑖
iid∼ 𝒩(0, 𝜎2

𝜀)

REMARK 1.1.1

The relationship between 𝑌𝑖 and 𝑍𝑖 doesn’t depend on 𝑖, it only depends upon the common
parameter 𝛽, and it assumes that 𝜀𝑖 has fixed variance for each 𝑖.

3. In such settings, one is typically interested in:

(a) Prediction: based on the data, how can we predict the behaviour of these variables in the future?

(b) Inference: how do we use the data to try to estimate and better understand the underlying
mechanism which generates the data? For example, a linear model or simple Gaussian model.

DEFINITION 1.1.2: Time series

We say 𝑋1, … , 𝑋𝑇 is an (observed) time series of length 𝑇 if 𝑋𝑡 denotes an observation obtained at
time 𝑡. In particular, the observations are ordered in time.

DEFINITION 1.1.3: Real-valued time series

If 𝑋𝑡 ∈ R, we say 𝑋1, … , 𝑋𝑇 is a real-valued (scalar) time series.

3
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DEFINITION 1.1.4: Multivariate time series

If 𝑋𝑡 ∈ R𝑝, we say 𝑋1, … , 𝑋𝑇 is a multivariate (vector-valued) time series.
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Figure 1.1: Quarterly Johnson and Johnson Earnings

# Figure 1.1
plot(jj, type = "o", ylab = "Quarterly Earnings per Share")

Observe that in Figure 1.1:

• The earnings are steadily increasing over time.

• There is heterogeneity in the variance over time.

With time series data, we are typically concerned with the same goals as in classical statistics (prediction and
inference). However, in contrast with time series, the data often exhibit:

(1) Heterogeneity

• Time trends → E[𝑋𝑡] ≠ E[𝑋𝑡+ℎ].

• Heteroskedasticity → V(𝑋𝑡) ≠ V(𝑋𝑡+ℎ).

In classical statistics, it’s assumed that all the observations have the same distribution which is clearly
not the case in time series.

(2) Serial Dependence (Serial Correlation)

• Observations that are temporally close appear to depend on each other.

In classical statistics, each successive observation is assumed to be independent which is clearly not the
case in time series.

# Figure 1.2
plot(gtemp, type = "o", ylab = "Global Temperature Deviations")

Observe that in Figure 1.2:

• The global temperature is steadily increasing over time.

• Heterogeneity exists within the mean over time.

• Heterogeneity exists within the variance over time, although it is not very apparent.
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Figure 1.2: 𝑥𝑡 is the deviation of global mean yearly temperature from the mean computed from 1951 to 1980

• Serial dependence occurs.

Let’s formally define a time series.

DEFINITION 1.1.5: Time series, Observed stretch

We say {𝑋𝑡}𝑡∈Z is a time series if {𝑋𝑡 ∶ 𝑡 ∈ Z} is a stochastic process indexed by Z. In other words,
there is a common probability space (𝛺, ℱ,P) such that 𝑋𝑡 ∶ 𝛺 → R is a random variable for all 𝑡.
In relation to the original definition, we say 𝑋1, … , 𝑋𝑇 is an observed stretch (realization, simple
path) of length 𝑇 from {𝑋𝑡}𝑡∈Z.

Formally speaking, we think of a time series as being a little snippet of one long sample path the stochastic
process for which would characterize all the serial dependence, time trends, and heteroskedasticity that exist
within a time series as can be seen in 1.3.

time

𝑋𝑡

−2 −1 1 2 𝑇 𝑇 +1 𝑇 +2… … …

Entire Time Series

Observed Time Series

Figure 1.3: Time Series
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1.2 Basic Principles of Forecasting
Consider a time series of length 𝑇, namely 𝑋1, … , 𝑋𝑇. Based on 𝑋1, … , 𝑋𝑇, we would like to produce a “best
guess” for 𝑋𝑇 +ℎ:

𝑋̂𝑇 +ℎ = 𝑋̂𝑇 +ℎ∣𝑇 = 𝑓ℎ(𝑋𝑇, … , 𝑋1)

DEFINITION 1.2.1: Forecast, Horizon

For ℎ ≥ 1, our “best guess”
𝑋̂𝑇 +ℎ = 𝑓ℎ(𝑋𝑇, … , 𝑋1)

is called a forecast of 𝑋𝑇 +ℎ at horizon ℎ.

Goals of Forecasting
Goal 1

• Choose 𝑓𝑛 “optimally.” Normally, we or the practitioner have some measure, say 𝐿(⋅, ⋅), in mind
for determining how “close” 𝑋̂𝑇 +ℎ is to the true value, 𝑋𝑇 +ℎ. We then wish to choose 𝑓ℎ so that
𝐿(𝑋𝑇 +ℎ, 𝑓ℎ(𝑋𝑇, … , 𝑋1)) is minimized, where 𝐿(⋅, ⋅) is a loss function.

EXAMPLE 1.2.2

The most common measure of 𝐿(⋅, ⋅) is the mean-squared error (MSE), defined by

𝐿(𝑋, 𝑌 ) = E[(𝑋 − 𝑌 )2]

Goal 2

• Quantify the uncertainty in the forecast. This entails providing some description of how close we expect
𝑋̂𝑇 +ℎ to be to 𝑋𝑇 +ℎ.

EXAMPLE 1.2.3: Why is it important to quantify uncertainty?

Suppose every minute, we flip a coin and denote
– (Heads): 𝐻 → 1
– (Tails): 𝑇 → −1
– 𝑋𝑡 = outcome in minute 𝑡, where 𝑡 = 1, … , 𝑇.

This produces a time series of length 𝑇, which is a random sequence of (1)’s and (−1)’s. Note
E[𝑋𝑡] = 0 for all 𝑡. If we wish to forecast for ℎ ≥ 1, consider 𝑋̂𝑇 +ℎ = 𝑓(𝑋𝑇, … , 𝑋1), thus

𝐿(𝑋𝑇 +ℎ, 𝑋̂𝑇 +ℎ) = E[(𝑋𝑇 +ℎ − 𝑋̂𝑇 +ℎ)2]

= E[𝑋2
𝑇 +ℎ] + E[𝑋̂2

𝑇 +ℎ] − 2E[𝑋𝑇 +ℎ𝑋̂𝑇 +ℎ]

= E[𝑋2
𝑇 +ℎ] + E[𝑋̂2

𝑇 +ℎ] − 2E[𝑋𝑇 +ℎ]E[𝑋̂𝑇 +ℎ]

= E[𝑋2
𝑇 +ℎ] + E[𝑋̂2

𝑇 +ℎ]

Note that we can write E[𝑋𝑇 +ℎ𝑋̂𝑇 +ℎ] = E[𝑋𝑇 +ℎ]E[𝑋̂𝑇 +ℎ] since 𝑋̂𝑇 +ℎ is a function of the data
𝑋𝑇, … , 𝑋1, and hence independent of 𝑋𝑇 +ℎ.
Furthermore, note that E[𝑋2

𝑇 +ℎ] = V(𝑋𝑡) since E[𝑋𝑇 +ℎ] = 0.
We can minimize this by taking 𝑋̂𝑇 +ℎ = 0. There’s nothing “wrong” with this forecast, but ideally
we would also be able to say that the sequence appears to be random, and that we don’t expect
this forecast to be close to the actual value.
Furthermore, for this basic reason, one can always argue that any forecast that’s not accompanied
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by some type of quantification of how close we expect the forecast to be, is at very least hard to
interpret; at worst, meaningless because it doesn’t describe the accuracy for which we expect the
forecast to perform.

How can we quantify the uncertainty in forecasting?
Ideal: The predictive distribution, that is,

𝑋𝑇 +ℎ ∣ 𝑋𝑇, … , 𝑋1

Excellent: Predictive intervals/sets, that is, for some 𝛼 ∈ (0, 1) find an interval 𝐼𝛼 such that

P(𝑋𝑇 +ℎ ∈ 𝐼𝛼 | 𝑋𝑇, … , 𝑋1) = 𝛼

A common example is with 𝛼 = 0.95. Often times, such intervals take the form

𝐼𝛼 = (𝑋̂𝑇 +ℎ − 𝜎̂ℎ, 𝑋̂𝑇 +ℎ + 𝜎̂ℎ)

Concluding Remarks
1. Estimating predictive distribution leads one towards estimating the joint distribution of

𝑋𝑇 +ℎ, 𝑋𝑇, … , 𝑋1

For example, the ARMA and ARIMA models.

2. It is important that we acknowledge that some things cannot be predicted!

“It’s tough to make predictions, especially about the future.”—Yogi Berra

1.3 Definitions of Stationary
Given a time series 𝑋1, … , 𝑋𝑇, we are frequently interested in estimating the joint distribution of

𝑋𝑇 +ℎ, 𝑋𝑇, … , 𝑋1

which is useful for forecasting and inference.

The joint distribution is a feature of the process {𝑋𝑡}𝑡∈Z

𝑋1, … , 𝑋𝑇 −−→
infer

{𝑋𝑡}𝑡∈Z

• 𝑋1, … , 𝑋𝑇: Observed data.

• {𝑋𝑡}𝑡∈Z: Stochastic process.

The worst case: 𝑋𝑡 ∼ 𝐹𝑡, where 𝐹𝑡 is a changing function of 𝑡. If so, it is hard to pool the data 𝑋1, … , 𝑋𝑇 to
estimate 𝐹𝑡. If serial dependence occurs; that is, if the distribution of (𝑋𝑡, 𝑋𝑡+ℎ) depends strongly on 𝑡, then
we have a similar problem in estimating e.g., Cov(𝑋𝑡, 𝑋𝑡+ℎ).

DEFINITION 1.3.1: Strictly stationary

We say that a time series {𝑋𝑡}𝑡∈Z is strictly stationary (strongly stationary) if for each 𝑘 ≥ 1,
𝑖1, … , 𝑖𝑘, ℎ ∈ Z,

(𝑋𝑖1
, … , 𝑋𝑖𝑘

) ≡ (𝑋𝑖1+ℎ, … , 𝑋𝑖𝑘+ℎ)

If we look at the 𝑘-dimensional joint distribution (𝑋𝑖1
, … , 𝑋𝑖𝑘

) of the series at points 𝑖1, … , 𝑖𝑘, then



CHAPTER 1. WEEK 1 8

time

𝑋𝑡

−2 −1 1 2 𝑇 𝑇 +1 𝑇 +2… … …

Complete Time Series

Observed Time Series

strict stationary means this is shift-invariant. That is, shifting the window on which you view the data,
does not change its distribution. This implies that if 𝐹𝑡 = CDF of 𝑋𝑡, then 𝐹𝑡 = 𝐹𝑡+ℎ = 𝐹; that is, all
variables have a common distribution function.

DEFINITION 1.3.2: Mean function

For a time series {𝑋𝑡}𝑡∈Z, with E[𝑋2
𝑡 ] < ∞ for all 𝑡 ∈ Z, we denote the mean function of the time series

as
𝜇𝑡 = E[𝑋𝑡]

DEFINITION 1.3.3: Autocovariance function

The autocovariance function of the time series {𝑋𝑡}𝑡∈Z is defined as

𝛾(𝑡, 𝑠) = E[(𝑋𝑡 − 𝜇𝑡)(𝑋𝑠 − 𝜇𝑠)] = Cov(𝑋𝑡, 𝑋𝑠)

DEFINITION 1.3.4: Weakly stationary, Lag

We say that a time series {𝑋𝑡}𝑡∈Z is weakly stationary if E[𝑋𝑡] = 𝜇 which does not depend on 𝑡, and if

𝛾(𝑡, 𝑠) = 𝑓(|𝑡 − 𝑠|)

that is, 𝛾(𝑡, 𝑠) is a function of |𝑡 − 𝑠|. In this case, we usually write

𝛾(ℎ) = Cov(𝑋𝑡, 𝑋𝑡+ℎ)

where we call the input ℎ the lag parameter.

Additional Terminology
• The property when E[𝑋𝑡] = 𝜇 which does not depend on 𝑡 is often called first order stationary.

• The property when 𝛾(𝑡, 𝑠) = 𝑓(|𝑡 − 𝑠|) only depends on the lag |𝑡 − 𝑠| is called second order stationary.

• For a second order stationary process,

𝛾(ℎ) = Cov(𝑋𝑡, 𝑋𝑡+ℎ)
= Cov(𝑋𝑡−ℎ, 𝑋𝑡−ℎ+ℎ) 𝑡 → (𝑡 − ℎ)
= Cov(𝑋𝑡, 𝑋𝑡−ℎ)
= 𝛾(−ℎ)

Since 𝛾(ℎ) = 𝛾(−ℎ), we normally only record 𝛾(ℎ) for ℎ ≥ 1.



CHAPTER 1. WEEK 1 9

1.4 White Noise and Stationary Examples

DEFINITION 1.4.1: Strong white noise

We say {𝑋𝑡}𝑡∈Z is a strong white noise if E[𝑋𝑡] = 0 and the {𝑋𝑡}𝑡∈Z are i.i.d.

DEFINITION 1.4.2: Weak white noise

We say {𝑋𝑡}𝑡∈Z is a weak white noise if E[𝑋𝑡] = 0 and

𝛾(𝑡, 𝑠) = Cov(𝑋𝑡, 𝑋𝑠) = {𝜎2 |𝑡 − 𝑠| = 0
0 |𝑡 − 𝑠| > 0

DEFINITION 1.4.3: Gaussian white noise

We say {𝑋𝑡}𝑡∈Z is a Gaussian white noise if 𝑋𝑡
iid∼ 𝒩(0, 𝜎2).

0 100 200 300 400 500
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1

0
1

2
3

Time

w

Figure 1.4: Gaussian White Noise of Length 500

# Figure 1.4
plot.ts(rnorm(500), main = "Gaussian White Noise", ylab = "w")

Figure 1.4 is a Gaussian white noise series. White comes from spectral analysis, in which a white noise series
shares the same spectral properties as white light: all periodicities occur with equal strength.

EXAMPLE 1.4.4

Suppose {𝑊𝑡}𝑡∈Z is a strong white noise, then E[𝑊𝑡] = 0; that is, the mean of 𝑊𝑡 doesn’t depend on 𝑡.

𝛾(𝑡, 𝑠) = Cov(𝑊𝑡, 𝑊𝑠) = E[𝑊𝑡𝑊𝑠] = {𝜎2
𝑊 |𝑡 − 𝑠| = 0

0 |𝑡 − 𝑠| > 0

𝛾(𝑡, 𝑠) only depends on |𝑡 − 𝑠|. Therefore, {𝑊𝑡}𝑡∈Z is weakly stationary. Furthermore, we claim that
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{𝑊𝑡}𝑡∈Z is strictly stationary. Let 𝑘 ≥ 1, 𝑖1, … , 𝑖𝑘, ℎ ∈ Z with 𝑖1 < ⋯ < 𝑖𝑘, then

P(𝑊𝑖1
≤ 𝑡1, … , 𝑊𝑖𝑘

≤ 𝑡𝑘) =
𝑘

∏
𝑗=1

P(𝑊𝑖𝑗
≤ 𝑡𝑗) independence

=
𝑘

∏
𝑗=1

P(𝑊𝑖𝑗+ℎ ≤ 𝑡𝑗)

= P(𝑊𝑖1+ℎ ≤ 𝑡1, … , 𝑊𝑖𝑘+ℎ ≤ 𝑡𝑘)

EXAMPLE 1.4.5

Suppose {𝑊𝑡}𝑡∈Z is a strong white noise. Define 𝑋𝑡 = 𝑊𝑡 + 𝜃𝑊𝑡−1 for 𝜃 ∈ R. Since {𝑊𝑡}𝑡∈Z is a strong
white noise, we have E[𝑊𝑡] = 0 for all 𝑡, hence we have E[𝑋𝑡] = E[𝑊𝑡 +𝜃𝑊𝑡−1] = E[𝑊𝑡]+𝜃E[𝑊𝑡−1] = 0
which is first order stationary.

𝛾(𝑡, 𝑠) = Cov(𝑋𝑡, 𝑋𝑠) =
⎧{
⎨{⎩

(1 + 𝜃2)𝜎2
𝑊 |𝑡 − 𝑠| = 0

𝜃𝜎2
𝑊 |𝑡 − 𝑠| = 1

0 |𝑡 − 𝑠| > 0

We obtain these calculations as follows:
• |𝑡 − 𝑠| = 0.

E[(𝑊𝑡 + 𝜃𝑊𝑡−1)2] = E[𝑊 2
𝑡 ] + 𝜃2 E[𝑊 2

𝑡−1] + 2E[𝜃𝑊𝑡𝑊𝑡−1] = (1 + 𝜃2)𝜎2
𝑊

since 𝑊𝑡 is independent of 𝑊𝑡−1. The calculation is easy to verify.
• 𝑡 = 𝑠 + 1 (or 𝑠 = 𝑡 + 1).

E[(𝑊𝑠+1 + 𝜃𝑊𝑠)(𝑊𝑠 + 𝜃𝑊𝑠−1)] = 𝜃E[𝑊 2
𝑠 ] = 𝜃𝜎2

𝑊

since 𝑊𝑠+1 is independent of 𝑊𝑠 and 𝑊𝑠−1. The calculation is easy to verify.
• |𝑡 − 𝑠| > 1. 𝑊𝑡 + 𝜃𝑊𝑡−1 is independent of 𝑊𝑠 + 𝜃𝑊𝑠−1.

We claim that {𝑋𝑡}𝑡∈Z is also strictly stationary. Let 𝑘 ≥ 1, 𝑖1, … , 𝑖𝑘, ℎ ∈ Z with 𝑖1 < ⋯ < 𝑖𝑘, then

P(𝑋𝑖1
≤ 𝑡1, … , 𝑋𝑖𝑘

≤ 𝑡𝑘) = P(𝑊𝑖1
+ 𝜃𝑊𝑖1−1 ≤ 𝑡1, … , 𝑊𝑖𝑘

+ 𝜃𝑊𝑖𝑘−1 ≤ 𝑡𝑘)

= P
⎛⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎣

𝑊𝑖1−1
𝑊𝑖1

⋮
𝑊𝑖𝑘

⎤
⎥
⎥
⎦

∈ ℬ
⎞⎟⎟⎟⎟
⎠

= P⎛⎜
⎝

⎡⎢
⎣

𝑊𝑖1−1+ℎ
⋮

𝑊𝑖𝑘+ℎ

⎤⎥
⎦

∈ ℬ⎞⎟
⎠

= P(𝑋𝑖1+ℎ ≤ 𝑡1, … , 𝑋𝑖𝑘+ℎ ≤ 𝑡𝑘)

where ℬ is some subset of R𝑖𝑘−𝑖1+1, and hence is shift-invariant.

DEFINITION 1.4.6: Bernoulli shift

Suppose {𝜀𝑡}𝑡∈Z is a strong white noise. If 𝑋𝑡 = 𝑔(𝜀𝑡, 𝜀𝑡−1, …) for some function 𝑔 ∶ R∞ → R, we say
that {𝑋𝑡}𝑡∈Z is a Bernoulli shift.
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REMARK 1.4.7

We can also make a more general definition for a Bernoulli shift. Suppose {𝜀𝑡}𝑡∈Z is a strong white noise.
If 𝑋𝑡 = 𝑔(… , 𝜀𝑡−1, 𝜀𝑡, 𝜀𝑡+1, …) for some function 𝑔 ∶ RZ → R, we say that {𝑋𝑡}𝑡∈Z is a Bernoulli shift.

THEOREM 1.4.8

If {𝑋𝑡}𝑡∈Z is a Bernoulli shift, then {𝑋𝑡}𝑡∈Z is strictly stationary.

REMARK 1.4.9

Norbert Wiener conjectured that every stationary sequence is a Bernoulli shift, which is not true. The
truth is, almost every one is.

EXERCISE 1.4.10

Suppose {𝑊𝑡}𝑡∈Z is a strong white noise. The two-sided random walk is defined as

𝑋𝑡 =
𝑡

∑
𝑖=0

𝑊𝑖 +
−1
∑
𝑖=𝑡

𝑊𝑖

Show that {𝑋𝑡}𝑡∈Z is first order stationary, but {𝑋𝑡}𝑡∈Z is not second order stationary.
Solution. {𝑋𝑡}𝑡∈Z is first order stationary since

E[𝑋𝑡] = E[
𝑡

∑
𝑖=0

𝑊𝑖 +
−1
∑
𝑖=𝑡

𝑊𝑖]

= E[𝑊0 + 𝑊1 + ⋯ + 𝑊𝑡−1 + 𝑊𝑡 + 𝑊𝑡 + 𝑊𝑡−1 + ⋯ + 𝑊0 + 𝑊−1]
= E[𝑊−1] + E[2𝑊0] + E[2𝑊1] + ⋯ + E[2𝑊𝑡−1]
= 0 + 2(0) + ⋯ + 2(0)
= 0

since {𝑊𝑡}𝑡∈Z is a strong white noise; that is, E[𝑊𝑡] = 0 for all 𝑡.
{𝑋𝑡}𝑡∈Z is not second order stationary since if 𝑡 > 0 the second sum is simply ∑−1

𝑖=𝑡 𝑊𝑖 = 0, and we have

E[(𝑋𝑡 − 𝜇𝑡)(𝑋𝑡 − 𝜇𝑡)] = E[𝑋2
𝑡 ]

= E[(
𝑡

∑
𝑖=0

𝑊𝑖)
2

]

= E[𝑊 2
0 ] + ⋯ + E[𝑊 2

𝑡 ] since 𝑊𝑖 ⟂⟂ 𝑊𝑗 for 𝑖 ≠ 𝑗
= 𝑡𝜎2

𝑊

which depends on 𝑡.

1.5 Weak versus Strong Stationary
Sadly, {𝑋𝑡}𝑡∈Z is strictly stationary does not imply {𝑋𝑡}𝑡∈Z is weakly stationary.



CHAPTER 1. WEEK 1 12

EXAMPLE 1.5.1

Suppose 𝑋𝑡
iid∼ Cauchy Random Variables; that is,

P(𝑋𝑡 ≤ 𝑠) = ∫
𝑠

−∞

1
𝜋(1 + 𝑥2)

𝑑𝑥

Then, E[𝑋𝑡] does not exist, and hence {𝑋𝑡}𝑡∈Z cannot be weakly stationary. However, {𝑋𝑡}𝑡∈Z is strictly
stationary in this case since {𝑋𝑡}𝑡∈Z is a strong white noise.

THEOREM 1.5.2

If {𝑋𝑡}𝑡∈Z is strongly stationary and E[𝑋2
0 ] < ∞, then {𝑋𝑡}𝑡∈Z is weakly stationary.

Proof of Theorem 1.5.2

Note that if {𝑋𝑡}𝑡∈Z is strictly stationary, then

(𝑋𝑡) ≡ (𝑋0)

so that E[𝑋𝑡] = E[𝑋0] = 𝜇 which does not depend on 𝑡, and also

V(𝑋𝑡) = V(𝑋0)

By the Cauchy-Schwarz inequality,

𝛾(𝑡, 𝑠) = Cov(𝑋𝑡, 𝑋𝑠)
= E[(𝑋𝑠 − 𝜇)(𝑋𝑡 − 𝜇)]

≤ {E[(𝑋𝑠 − 𝜇)2]}
1/2

{E[(𝑋𝑡 − 𝜇)2]}
1/2

= √V(𝑋𝑠)√V(𝑋𝑡)
= V(𝑋𝑡) < ∞

If 𝑡 < 𝑠, then
Cov(𝑋𝑡, 𝑋𝑠) = Cov(𝑋0, 𝑋𝑠−𝑡) = 𝑓(|𝑠 − 𝑡|)

since it is shift-invariant, and hence if we shift everything over by 𝑡,

(𝑋𝑡, 𝑋𝑠) ≡ (𝑋𝑡−𝑡, 𝑋𝑠−𝑡) ≡ (𝑋0, 𝑋𝑠−𝑡)

DEFINITION 1.5.3: Gaussian process

{𝑋𝑡}𝑡∈Z is said to be a Gaussian process (Gaussian time series) if for each 𝑘 ∈ Z≥1, 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘
we have

(𝑋𝑖1
, … , 𝑋𝑖𝑘

) ∼ MVN(𝝁𝑘(𝑖1, … , 𝑖𝑘), 𝛴𝑘×𝑘(𝑖1, … , 𝑖𝑘))

𝝁𝑘 = ⎡⎢
⎣

E[𝑋𝑖1
]

⋮
E[𝑋𝑖𝑘

]
⎤⎥
⎦

𝛴𝑘×𝑘 = Cov(𝑋𝑖𝑗
, 𝑋𝑖𝑟

)1≤𝑗, 𝑟≤𝑘

THEOREM 1.5.4

If {𝑋𝑡}𝑡∈Z is weakly stationary and is a Gaussian process, then {𝑋𝑡}𝑡∈Z is strictly stationary.
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Proof of Theorem 1.5.4

If {𝑋𝑡}𝑡∈Z is weakly stationary, then E[𝑋𝑡] = 𝜇 for all 𝑡.

(𝑋𝑖1
, … , 𝑋𝑖𝑘

) → ⎡⎢
⎣

E[𝑋𝑖1
]

⋮
E[𝑋𝑖𝑘

]
⎤⎥
⎦

= ⎡⎢
⎣

𝜇
⋮
𝜇

⎤⎥
⎦

= 𝝁 = ⎡⎢
⎣

E[𝑋𝑖1+ℎ]
⋮

E[𝑋𝑖𝑘+ℎ]
⎤⎥
⎦

Also,

V(𝑋𝑖1
, … , 𝑋𝑖𝑘

) = Cov(𝑋𝑖𝑗
, 𝑋𝑖𝑟

)1≤𝑗, 𝑟≤𝑘

= Cov(𝑋0, 𝑋𝑖𝑟−𝑖𝑗
)1≤𝑗, 𝑟≤𝑘

= Cov(𝑋0, 𝑋𝑖𝑟+ℎ−(𝑖𝑗+ℎ))1≤𝑗, 𝑟≤𝑘

= Cov(𝑋𝑖𝑗+ℎ, 𝑋𝑖𝑟+ℎ)1≤𝑗, 𝑟≤𝑘

= V(𝑋𝑖1+ℎ, … , 𝑋𝑖𝑘+ℎ)

Using the Gaussian assumption

(𝑋𝑖1
, … , 𝑋𝑖𝑘

) ≡ MVN(𝝁, 𝜮𝑘×𝑘) ≡ (𝑋𝑖1+ℎ, … , 𝑋𝑖𝑘+ℎ)

Hence {𝑋𝑡}𝑡∈Z is strictly stationary in this case.

EXERCISE 1.5.5

Prove that if {𝑋𝑡}𝑡∈Z is not weakly stationary; that is, either E[𝑋𝑡] depends on 𝑡 or 𝛾(𝑡, 𝑠) does not
depend on the lag, and has a finite mean and variance, then {𝑋𝑡}𝑡∈Z is not strictly stationary.

1.6 † Theoretical L2 Framework for Time Series
• 𝑋𝑡 = lim

ℎ→∞
𝑋ℎ,𝑡. In what sense does this limit exist?

• How “close” are two random variables 𝑋 and 𝑌?

• Is there a random variable that achieves
inf
𝑦∈𝑆

𝑑(𝑌 , 𝑆)

DEFINITION 1.6.1: 𝐿2 space

Consider a probability space (𝛺, ℱ,P). The space 𝐿2 is the set of random variables 𝑋 ∶ 𝛺 → R
measurable so that E[𝑋2] < ∞.

DEFINITION 1.6.2: 𝐿2-time series

We say that {𝑋𝑡}𝑡∈Z is and 𝐿2-time series if 𝑋𝑡 ∈ 𝐿2 for all 𝑡 ∈ Z.

𝐿2 is a Hilbert space when equipped with inner product, 𝑋, 𝑌 ∈ 𝐿2.

⟨𝑋, 𝑌 ⟩ = E[𝑋𝑌 ]

⟨ ⋅ , ⋅ ⟩ is an inner product since it is

(1) Linear: ⟨𝑎𝑋 + 𝑏𝑌 , 𝑍⟩ = 𝑎⟨𝑋, 𝑍⟩ + 𝑏⟨𝑌 , 𝑍⟩.
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(2) “Almost” Positive Definite: ⟨𝑋, 𝑋⟩ = E[𝑋2] = 0 ⟺ 𝑋 = 0 almost surely; that is, P(𝑋 = 0) = 1.

(3) Symmetric: ⟨𝑋, 𝑌 ⟩ = ⟨𝑌 , 𝑋⟩.

𝐿2 is complete with this inner product; that is, whenever 𝑋𝑛 ∈ 𝐿2 so that E[(𝑋𝑛 − 𝑋𝑚)2] → 0 as 𝑛, 𝑚 → ∞,
then there exists 𝑋 ∈ 𝐿2 so that 𝑋𝑛 → 𝑋; that is, E[(𝑋𝑛 − 𝑋)2] → 0. This follows from the “famous”
Riesz-Fischer Theorem.

Useful Tools for Time Series
(1) Existence of Limits

𝑋𝑡,𝑛 =
𝑛

∑
𝑗=0

𝜓𝑗𝜀𝑡−𝑗

{𝜀𝑡}𝑡∈Z is a strong white noise. Since for 𝑛 > 𝑚,

E[(𝑋𝑡,𝑛 − 𝑋𝑡,𝑚)2] = E[(
𝑛

∑
𝑗=𝑚+1

𝜓𝑗𝜀𝑡−𝑗)
2

] =
𝑛

∑
𝑗=𝑚+1

𝜓2
𝑗 𝜎2

𝜀 → 0 as 𝑛, 𝑚 → ∞

only if ∑∞
𝑗=0 𝜓2

𝑗 < ∞, then there must exist a random variable 𝑋𝑡 (by the completeness of 𝐿2), so that

𝑋𝑡 = lim
𝑛→∞

𝑋𝑡,𝑛 =
∞

∑
𝑗=0

𝜓𝑗𝜀𝑡−𝑗

(2) Projection Theorem and Forecasting. Forecasting can be often cast as finding a random variable 𝑌
among a collection of possible forecasts ℳ (e.g., ℳ = Span(𝑋𝑇, … , 𝑋1)) so that

𝑌 = arg inf
𝑍∈ℳ

E[(𝑋𝑇 +ℎ − 𝑍)2]

When ℳ is a closed linear subspace of 𝐿2, the Projection Theorem guarantees that such a 𝑌 exists, and
it must satisfy

⟨𝑋𝑇 +ℎ − 𝑌 , 𝑍⟩ = 0 ∀𝑍 ∈ ℳ

must be in the orthogonal complement.

1.7 Signal and Noise Models
“Ideally,” a time series that we are considering was generated from a stationary process. If so, we can pool
data to estimate the processes underlying structure (e.g., its marginal distribution, and serial dependence
structure).

Most time series are evidently not stationary.

Looking back at Figure 1.1:

• Mean appears to increase, so it is not first order stationary;

• Variability also appears to increase, so it is not second order stationary;

• Therefore, it is not strictly stationary.

Signal and Noise Model: 𝑋𝑡 = 𝑠𝑡 + 𝜀𝑡

• 𝑠𝑡 is the deterministic “signal” or “trend” of the series.
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• 𝜀𝑡 is the “noise” added to the signal satisfying E[𝜀𝑡] = 0, hence E[𝑋𝑡] = E[𝑠𝑡 + 𝜀𝑡] = E[𝑠𝑡]. There exists a
(strong) white noise {𝑊𝑡}𝑡∈Z so that

𝜀𝑡 = 𝑔(𝑊𝑡, 𝑊𝑡−1, …) [Stationary Noise]

𝜀𝑡 = 𝑔𝑡(𝑊𝑡, 𝑊𝑡−1, …) [Non-stationary Noise]
The terms {𝑊𝑡}𝑡∈Z are often called the “innovations” or “shocks” driving the random behaviour of 𝑋𝑡.

𝑔 is used to try to capture noise that can potentially have serial dependence.

EXAMPLE 1.7.1

An example of a function 𝑔 so that 𝜀𝑡 = 𝑔𝑡(𝑊𝑡, 𝑊𝑡−1, …) might be a random walk; that is, 𝜀𝑡 = ∑𝑡
𝑗=0 𝑊𝑗.

Another example could be the changing variance models; that is, 𝜀𝑡 = 𝜎(𝑡)𝑊𝑡.

Our goal is to estimate 𝑠𝑡, and then infer the structure of 𝜀𝑡.

In Figure 1.2, the model appears to be non-stationary (trending upwards over time), so we might try the signal
and noise model. We might posit a linear trend, or even higher order functions.

For the temperature data, we may posit that

𝑠𝑡 = 𝛽0 + 𝛽1𝑡 [Linear Trend]

The trend may be estimated by ordinary least squares (OLS). We choose 𝛽0 and 𝛽1 to minimize
𝑇

∑
𝑡=1

[𝑋𝑡 − (𝛽0 + 𝛽1𝑡)]2

This can be done in R using the lm() command, and can easily be computed with calculus. Figure 1.5 is a
small example of the global temperature data superimposed with the lm() estimate.
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Figure 1.5: OLS estimate of linear trend

# Figure 1.5
fit <- lm(gtemp ~ time(gtemp), na.action = NULL)
plot.ts(gtemp, type = "o", ylab = "Global Temperature Deviations")
abline(fit)

Let’s introduce some terminology about trends.



CHAPTER 1. WEEK 1 16

DEFINITION 1.7.2: Detrended time series

Detrending a time series constitutes computing the residuals based on an estimate for the signal/trend.
A detrended time series is a time series of such residuals.

1. Estimate 𝑠𝑡 → ̂𝑠𝑡.
2. Detrend series: 𝑋𝑡 − ̂𝑠𝑡 = 𝑌𝑡 where 𝑌𝑡 is the “detrended” series.
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Figure 1.6: Residuals of OLS fit.

# Figure 1.6
plot(resid(fit), type = "o", main = "detrended")

In Figure 1.6: If trend is now zero, there appears to be a substantial serial dependence remaining in the time
series.

1.8 Time Series Differencing
Signal and Noise Model: 𝑋𝑡 = 𝑠𝑡 + 𝜀𝑡. Hopefully, upon estimating 𝑠𝑡 with ̂𝑠𝑡, we find 𝑋𝑡 − ̂𝑠𝑡 = ̂𝜀𝑡 (detrended
series) which looks reasonably stationary. If the residuals were reasonably stationary, we might proceed in
estimating their underlying structure of { ̂𝜀𝑡}𝑡=1,…,𝑇 as if it were stationary. In particular, we might try to
estimate their marginal distributions and/or their serial dependence structure. If we thought those estimates
were reasonably good, we would have a good idea of how the time series 𝑋𝑡 behaves.

Random Walk with Drift Model. Let 𝜀𝑡 be a strong white noise.

𝑋𝑡 = 𝛿 + 𝑋𝑡−1 + 𝜀𝑡

= 𝛿 + 𝛿 + 𝑋𝑡−2 + 𝜀𝑡−1 + 𝜀𝑡

= 𝛿 + 𝛿 + 𝛿 + 𝑋𝑡−3 + 𝜀𝑡−2 + 𝜀𝑡−1 + 𝜀𝑡

⋮ 𝑡 times

= 𝑡𝛿 + 𝑋0 + ∑𝑡
𝑗=1 𝜀𝑗

where we note that 𝑡𝛿 + 𝑋0 = 𝑠𝑡 is a linear signal, and ∑𝑡
𝑗=1 𝜀𝑗 is a random walk noise.
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Notice that under the Random Walk Model.

𝑋𝑡 − 𝑋𝑡−1 = ∇𝑋𝑡 = 𝛿 + 𝜀𝑡

So, if 𝑋𝑡 follows a random walk model, the series 𝑌𝑡 = ∇𝑋𝑡 should behave like a white noise shifted by 𝛿.
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Figure 1.7: First differenced series. Average of first differenced series is ̂𝛿 ≈ 0.0066

# Figure 1.7
plot(diff(gtemp), type = "o", main = "first difference")

In Figure 1.7: To see what this looks like in this temperature example, here is a plot of ∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1
for Figure 1.2. As you can see if you look at this compared to the detrended series using linear trend, I would
say this series looks much more like a white noise (there does not appear to be any discernible patterns in this
first difference). If you calculate the mean of this first difference series, that would be an estimator for the
drift term in the random walk model which here is ≈ 0.0066.

DEFINITION 1.8.1: Differenced time series

Differencing a time series constitutes computing the difference between successive terms.
A differenced time series is a time series of such differences. The first differenced series is denoted

∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1

and is the series of length 𝑇 − 1, namely

𝑋2 − 𝑋1, 𝑋3 − 𝑋2, … , 𝑋𝑇 − 𝑋𝑇 −1

Higher order differences are calculated recursively, so

∇𝑑𝑋𝑡 = ∇𝑑−1∇𝑋𝑡

where ∇𝑑 is the 𝑑th order difference, and we define ∇0𝑋𝑡 = 𝑋𝑡.

Detrending and Differencing are both ways of reducing a (potentially non-stationary) time series to an
approximately stationary series.
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Differencing vs. Detrending
Pros:

• Differencing does not require the parameter estimation (don’t need to estimate 𝑠𝑡).

• Higher order differencing can reduce even very “trendy” series to look more like noise.

Cons:

• Differencing can “wash away” features of the series, and introduce more complicated structures.

• The trend is often of interest, and good estimates of the trend lead to improved long-range forecasts.

EXAMPLE 1.8.2: Potentially Complicating Series with Differencing

𝑋𝑡 = 𝑊𝑡 where 𝑊𝑡 is a strong white noise.

∇𝑋𝑡 = 𝑊𝑡 − 𝑊𝑡−1 = 𝑌𝑡

𝛾𝑋(ℎ) = Cov(𝑋𝑡, 𝑋𝑡+ℎ) = {𝜎2
𝑊 ℎ = 0

0 ℎ ≥ 1

More complicated:

𝛾𝑌(ℎ) = Cov(𝑌𝑡, 𝑌𝑡+ℎ) =
⎧{
⎨{⎩

2𝜎2
𝑊 ℎ = 0

−𝜎2
𝑊 ℎ = 1

0 ℎ ≥ 2
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Figure 1.8: First Difference and White Noise

# Figure 1.8
par(mfrow = c(2, 1))
plot(diff(gtemp), main = "first difference Temp data")
plot(rnorm(gtemp),

type = "l",
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main = "white noise",
ylab = "w")

In Figure 1.8: If these two series behave in the same way, then it stands to reason that

𝑔(𝜀𝑡, 𝜀𝑡−1, …) = 𝜀𝑡
iid∼ 𝒩(0, 𝜎2

temp)



Chapter 2

Week 2

2.1 Autocorrelation and Empirical Autocorrelation
Usually through either detrending or differencing, we arrive at a series {𝑋𝑡}𝑡∈Z that we may consider as
stationary.

Given such a series, we wish to estimate a function 𝑔, so that

𝑋𝑡 = 𝑔(𝑊𝑡, 𝑊𝑡−1, …)

{𝑊𝑡}𝑡∈Z is a “innovation” sequence (strong white noise) which could admit serial dependence, etc.

In a first pass, it’s reasonable to assume that 𝑔 is a linear function.

DEFINITION 2.1.1: Linear process

A time series {𝑋𝑡}𝑡∈Z is said to be a linear process if there exists a strong white noise {𝑊𝑡}𝑡∈Z and
coefficient {𝜓ℓ}ℓ∈Z where 𝜓ℓ ∈ R, so that

∞
∑

ℓ=−∞
|𝜓ℓ| < ∞

and
𝑋𝑡 =

∞
∑

ℓ=−∞
𝜓ℓ𝑊𝑡−ℓ

Note that the sum defining 𝑋𝑡 is well-defined as a limit in 𝐿2. Also, we must require that V(𝑊𝑡−ℓ) < ∞.

DEFINITION 2.1.2: Causal linear process

We say {𝑋𝑡}𝑡∈Z is a causal linear process if

𝑋𝑡 =
∞

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ

Note that 𝑋𝑡 only depends on 𝑊’s in the “past.”

EXAMPLE 2.1.3

𝑋𝑡 = 𝑊𝑡 is a linear process, so all 𝜓’s are 0, except for 𝜓0 = 1 which is a strong white noise sequence.

20
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REMARK 2.1.4

Linear processes are strictly stationary since they can be written as Bernoulli-shifts.

EXAMPLE 2.1.5

𝑋𝑡 = 𝑊𝑡 + 𝜃𝑊𝑡−1 where {𝑊𝑡}𝑡∈Z is a strong white noise with finite variance. 𝑋𝑡 is a linear process.

𝛾𝑋 =
⎧{
⎨{⎩

(1 + 𝜃2)𝜎2
𝑊 ℎ = 0 always non-zero

𝜃𝜎2
𝑊 ℎ = 1

0 ℎ ≥ 2

𝛾𝑋(ℎ) non-zero for ℎ ≥ 1 only where “lagged” terms in the linear process are non-zero. Suggests a way
of sleuthing out what

𝑔(𝑊𝑡, 𝑊𝑡−1, …) =
∞

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ

must look like.

DEFINITION 2.1.6: Autocorrelation function

Suppose {𝑋𝑡}𝑡∈Z is weakly stationary. The autocorrelation function (ACF) of {𝑋𝑡}𝑡∈Z is

𝜌𝑋(ℎ) = 𝛾(ℎ)
𝛾(0)

(ℎ ≥ 0)

Note since 𝛾(0) = V(𝑋𝑡) = V(𝑋0) (since the process is stationary),

|𝛾(ℎ)| = |Cov(𝑋𝑡, 𝑋𝑡+ℎ)| ≤⎵
CS

√ V(𝑋𝑡)V(𝑋𝑡+ℎ)⎵⎵⎵⎵⎵⎵
Same # by stationarity

= V(𝑋0)

Hence, |𝜌(ℎ)| ≤ 1 ⟹ −1 ≤ 𝜌(ℎ) ≤ 1.

Estimating 𝛾(ℎ) and 𝜌(ℎ)
𝛾(ℎ) = Cov(𝑋𝑡, 𝑋𝑡+ℎ) = E[(𝑋𝑡 − 𝜇)(𝑋𝑡+ℎ − 𝜇)]

where 𝜇 = E[𝑋𝑡]. Hence, a sensible estimator is

̂𝜇 = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑡 = 𝑋̄

which is the sample mean (time series average).

̂𝛾(ℎ) = 1
𝑇

𝑇 −ℎ
∑
𝑡=1

(𝑋𝑡 − 𝑋̄)(𝑋𝑡+ℎ − 𝑋̄) ≈ 1
𝑇 − ℎ

𝑇 −ℎ
∑
𝑡=1

(𝑋𝑡 − 𝑋̄)(𝑋𝑡+ℎ − 𝑋̄)

where (𝑋𝑡 − 𝑋̄)(𝑋𝑡+ℎ − 𝑋̄) is the averaging over centred terms ℎ-time steps apart.

̂𝜌(ℎ) = ̂𝛾(ℎ)
̂𝛾(0)
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EXAMPLE 2.1.7

𝑋𝑡 = 𝑊𝑡 where {𝑊𝑡}𝑡∈Z is a strong white noise with V(𝑊𝑡) = 𝜎2
𝑊 < ∞.

𝛾𝑋(ℎ) = {𝜎2
𝑊 ℎ = 0

0 ℎ ≥ 1

Therefore,

𝜌𝑋(ℎ) = {1 ℎ = 0
0 ℎ ≥ 1

Note that it’s always the case that

𝜌(0) = 𝛾(0)
𝛾(0)

= 1

0 5 10 15 20 25

0.
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Series  rnorm(500)

Figure 2.1: ACF of white noise, sample length 130

# Figure 2.1
acf(rnorm(500))

In Figure 2.1: Let’s then have a look at what the empirical autocorrelation function looks like when we apply
it to a strong white noise sample. In this case, we are considering a strong Gaussian white noise with variance
1. This is what the sample ACF looks like. What we’re plotting here is on the 𝑥-axis we have the lags ℎ, and
on the 𝑦-axis we have the magnitudes of the autocorrelation ̂𝜌(ℎ). What we’re seeing here is ̂𝜌(0) = 1 (by
definition). However, for lags other than zero, for the other autocorrelations plotted, we can see that they are
relatively small compared to ̂𝜌(0) = 1, which is the point of the blue lines (explained in the next lecture). The
basic interpretation of blue lines is that if an autocorrelation would go inside the blue lines then you could
imagine that it would be consistent with the series being a strong white noise, which is what we observe here.
There are small violations that can occur by sheer chance.
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2.2 Modes of Convergence of Random Variables
̂𝛾(ℎ) is an estimator of 𝛾(ℎ) when the data is stationary, and we want to discuss the asymptotic properties of

this estimator.

Review/Introduce
(1) Stochastic Boundedness (convergence of random variables): 𝒪(𝑝) and 𝑜(𝑝)

(2) Convergence in Probability

(3) Convergence in Distribution

DEFINITION 2.2.1: Bounded in probability

Suppose {𝑋𝑛}𝑛≥1 is a sequence of random variables. We say that 𝑋𝑛 is bounded in probability by 𝑌𝑛
if for all 𝜀 > 0, there exists real numbers 𝑀, 𝑁, so that for all 𝑛 ≥ 𝑁,

P(∣𝑋𝑛
𝑌𝑛

∣ > 𝑀) ≤ 𝜀

Notation: 𝑋𝑛 = 𝒪𝑝(𝑌𝑛), and in English, we say “𝑋𝑛 is on the order of 𝑌𝑛.”

DEFINITION 2.2.2: Converges in probability

We say 𝑋𝑛 converges in probability to 𝑋 if for all 𝜀 > 0,

lim
𝑛→∞

P(|𝑋𝑛 − 𝑋| > 𝜀) = 0

If 𝑎𝑛 is a sequence of scalars, we abbreviate
𝑋𝑛
𝑎𝑛

converges in probability to zero as

𝑋𝑛 = 𝑜𝑝(𝑎𝑛) ⟺ P(∣𝑋𝑛
𝑎𝑛

∣ > 𝜀)
𝑛→∞
−−−→ 0 (∀𝜀 > 0)

Hence, 𝑋𝑛 converges in probability to zero is denoted 𝑋𝑛 = 𝑜𝑝(1). Likewise, we also write 𝑋𝑛
𝑝

→ 𝑋 to
denote 𝑋𝑛 converges in probability to 𝑋.

DEFINITION 2.2.3: Converges in distribution

We say that the sequence of scalar random variables 𝑋𝑛 with respective CDF’s 𝐹𝑛(𝑥) converges in
distribution to 𝑋 with CDF 𝐹(𝑥) if for all continuity points of 𝑦 of 𝐹,

lim
𝑛→∞

|𝐹𝑛(𝑦) − 𝐹(𝑦)| = 0

REMARK 2.2.4

When 𝐹(𝑥) is the CDF of a continuous random variable (e.g., a normal CDF), then

lim
𝑛→∞

|𝐹𝑛(𝑦) − 𝐹(𝑦)| = 0 (∀𝑦 ∈ R)
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THEOREM 2.2.5: Markov’s Inequality

If E[𝑌 2] < ∞, then

P(|𝑌 | ≥ 𝑚) ≤ E[𝑌 2]
𝑚2

Proof of Theorem 2.2.5

E[𝑌 2] = E[𝑌 2I{|𝑌 | ≥ 𝑚} + 𝑌 2I{|𝑌 | < 𝑚}]

= E[𝑌 2I{|𝑌 | ≥ 𝑚}] + E[𝑌 2I{|𝑌 | < 𝑚}]

≥ E[𝑌 2I{|𝑌 | ≥ 𝑚}]

≥ 𝑚2 E[I{|𝑌 | ≥ 𝑚}] since 𝑌 2 ≥ 𝑚2

= 𝑚2 P(|𝑌 | ≥ 𝑚)

REMARK 2.2.6: Generalization of Markov’s Inequality

If E[𝑌 𝑘] < ∞, then

P(|𝑌 | ≥ 𝑚) ≤
E[|𝑌 |𝑘]

𝑚𝑘

EXAMPLE 2.2.7

Suppose 𝑋𝑛 is a strong white noise in 𝐿2 (E[𝑋2
0 ] < ∞), and let

𝑋̄𝑇 = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑡

Then,
(1) |𝑋̄𝑇| = 𝑜𝑝(1).

V(𝑋̄𝑇) = E[𝑋̄2
𝑇]

= 1
𝑇 2 E[(

𝑇
∑
𝑡=1

𝑋𝑡)
2

]

= 1
𝑇 2

𝑇
∑
𝑡=1

𝑇
∑
𝑠=1

E[𝑋𝑡𝑋𝑠]⎵⎵⎵
≠0 ⟺ 𝑡=𝑠

= 1
𝑇 2

𝑇
∑
𝑡=1

E[𝑋2
𝑡 ]

= 1
𝑇 2

𝑇
∑
𝑡=1

E[𝑋2
0 ]

= 𝜎2

𝑇
since 𝜎2 = E[𝑋2

0 ]

Therefore, for 𝜀 > 0, by Markov’s Inequality we have

P(|𝑋̄𝑇| > 𝜀) ≤
E[|𝑋̄𝑇|2]

𝜀2 = 𝜎2/𝑇
𝜀2

𝑇 →∞
−−−→ 0

Hence, |𝑋̄𝑇|
𝑝

→ 0
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(2) 𝑋̄𝑇 = 𝒪𝑝(1/
√

𝑇), as before

V( 𝑋̄𝑇

1/
√

𝑇
) = V(

√
𝑇𝑋̄𝑇) = 𝑇V(𝑋̄𝑇) = 𝜎2

So by Markov’s Inequality, for 𝑀 > 0

P(|
√

𝑇𝑋̄𝑇| > 𝑀) ≤ V(
√

𝑇𝑋̄𝑇)
𝑀2 = 𝜎2

𝑀2
𝑀→∞
−−−−→ 0

Hence
√

𝑇𝑋̄𝑇 = 𝒪𝑝(1) ⟹ 𝑋̄𝑇 = 𝒪𝑝(1/
√

𝑇).

REMARK 2.2.8

Alternatively, we can show this using the CLT. By the CLT,
√

𝑇𝑋̄𝑇
𝐷
→ 𝒩(0, 𝜎2)

Therefore, if 𝐹𝑇 ∼ CDF of
√

𝑇𝑋̄𝑇 and 𝛷 ∼ CDF of 𝒩(0, 1) random variable we have

∣𝐹𝑇(𝑥) − 𝛷(𝑥
𝜎

)∣
𝑇 →∞
−−−→ 0 (∀𝑥 ∈ R)

For 𝜀 > 0, choose 𝑀 such that

𝛷(−𝑀
𝜎

) = 1 − (𝑀
𝜎

) ≤ 𝜀
4

For this 𝑀, choose 𝑇0 such that if 𝑇 ≥ 𝑇0, then

∣𝐹𝑇(−𝑀) − 𝛷(−𝑀
𝜎

)∣ ≤ 𝜀
4

and
∣𝐹𝑇(𝑀) − 𝛷(𝑀

𝜎
)∣ ≤ 𝜀

4

Then,

P(|
√

𝑇𝑋̄𝑇| ≥ 𝑀) = 𝐹𝑇(−𝑀) + (1 − 𝐹𝑇(𝑀))

= 𝛷(−𝑀
𝜎

) + [1 − 𝛷(𝑀
𝜎

)] + 𝐹𝑇(−𝑀) − 𝛷(−𝑀
𝜎

) + 𝛷(𝑀
𝜎

) − 𝐹𝑇(𝑀)

≤ 𝜀
4

+ 𝜀
4

+ 𝜀
4

+ 𝜀
4

= 𝜀

REMARK 2.2.9

In general,
𝑋𝑛
𝑎𝑛

𝐷
→ non-degenerate random variable ⟹ 𝑋𝑛 = 𝒪𝑝(𝑎𝑛)
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REMARK 2.2.10: Algebra of 𝒪𝑝 and 𝑜(𝑝) notation

1. If 𝑋𝑛 = 𝒪𝑝(𝑎𝑛) and 𝑌𝑛 = 𝒪𝑝(𝑏𝑛), then

𝑋𝑛 + 𝑌𝑛 = 𝒪𝑝(max(𝑎𝑛, 𝑏𝑛))

2. If 𝑋𝑛 = 𝑜𝑝(1) and 𝑌𝑛 = 𝑜𝑝(1), then

𝑋𝑛 + 𝑌𝑛 = 𝑜𝑝(1)

3. If 𝑋𝑛 = 𝑜𝑝(1) and 𝑌𝑛 = 𝑜𝑝(1), then
𝑋𝑛𝑌𝑛 = 𝑜𝑝(1)

EXAMPLE 2.2.11

Suppose 𝑊𝑡 is a strong white noise in 𝐿2 with E[𝑊 4
𝑡 ] < ∞. Let 𝑋𝑡 = 𝑊𝑡 + 𝜃𝑊𝑡−1 for 𝜃 ∈ R. Show that

̂𝛾(1)
𝑝

→ 𝜃𝜎2
𝑊

Solution.

𝑋̄𝑇 = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑡

= 1
𝑇

𝑇
∑
𝑡=1

(𝑊𝑡 + 𝜃𝑊𝑡−1)

= 1
𝑇

𝑇
∑
𝑡=1

𝑊𝑡 + 𝜃
𝑇

𝑇
∑
𝑡=

𝑊𝑡−1

= 𝑜𝑝(1) by WLLN

̂𝛾(1) = 1
𝑇

𝑇 −1
∑
𝑡=1

(𝑋𝑡 − 𝑋̄𝑇)(𝑋𝑡+1 − 𝑋̄𝑇)

= 1
𝑇

𝑇 −1
∑
𝑡=1

[𝑋𝑡𝑋𝑡+1 − 𝑋𝑡𝑋̄𝑇 − 𝑋̄𝑇𝑋𝑡+1 + (𝑋̄𝑇)2]

= 1
𝑇

𝑇 −1
∑
𝑡=1

𝑋𝑡𝑋𝑡+1 − 𝑋̄𝑇
𝑇

𝑇 −1
∑
𝑡=1

𝑋𝑡 − 𝑋̄𝑇
𝑇

𝑇 −1
∑
𝑡=1

𝑋𝑡+1 + 𝑇 − 1
𝑇

(𝑋̄𝑇)2

= 1
𝑇

𝑇 −1
∑
𝑡=1

𝑋𝑡𝑋𝑡+1 + 𝑅1 + 𝑅2 + 𝑅3

Notice that 𝑅𝑖 = 𝑜𝑝(1) for 𝑖 = 1, 2, 3 since, for example, 𝑋̄𝑇 = 𝑜𝑝(1) and ∑𝑇
𝑡=1 𝑋𝑡 = 𝑜𝑝(1) so their

product is 𝑜𝑝(1); so we only need to focus on the first term.

1
𝑇

𝑇 −1
∑
𝑡=1

𝑋𝑡𝑋𝑡+1 = 1
𝑇

𝑇 −1
∑
𝑡=1

(𝑊𝑡 + 𝜃𝑊𝑡−1)(𝑊𝑡+1 + 𝜃𝑊𝑡)

= 1
𝑇

𝑇 −1
∑
𝑡=1

𝜃𝑊 2
𝑡 + 𝐺1 + 𝐺2 + 𝐺3

Now,
1
𝑇

𝑇 −1
∑
𝑡=1

𝜃𝑊 2
𝑡

a.s.
→ 𝜃E[𝑊 2

𝑡 ] = 𝜃𝜎2
𝑊



CHAPTER 2. WEEK 2 27

by strong law of large numbers. We now wish to calculate the variance of

𝐺1 = 1
𝑇

𝑇 −1
∑
𝑡=1

𝑊𝑡𝑊𝑡+1.

E[𝐺1] = 1
𝑇

𝑇 −1
∑
𝑡=1

E[𝑊𝑡𝑊𝑡+1] = 0

V(𝐺1) = E[𝐺2
1]

= 1
𝑇 2

𝑇 −1
∑
𝑡=1

𝑇 −1
∑
𝑠=1

E[𝑊𝑡𝑊𝑡+1𝑊𝑠𝑊𝑠+1]⎵⎵⎵⎵⎵⎵⎵⎵
≠0 ⟺ 𝑠=𝑡

= 1
𝑇 2

𝑇 −1
∑
𝑡=1

E[𝑊 2
𝑡 𝑊 2

𝑡+1]

= 𝑇 − 1
𝑇 2 𝜎4

𝑊
𝑇 →∞
−−−→ 0

By Markov’s Inequality: 𝐺1 = 𝑜𝑝(1), and similarly, for 𝐺2 and 𝐺3.

2.3 † M-dependent CLT
Suppose 𝑋𝑡 is a mean zero strictly stationary time series with E[𝑋2

𝑡 ] < ∞. We are frequently faced with the
problems:

(1) What is the approximate distribution of

1√
𝑇

𝑇
∑
𝑡=1

𝑋𝑡 =
√

𝑇𝑋̄𝑇
𝐷≈ 𝒩(0, 𝜎2

𝑋)

(2) If 𝑋𝑡 is a strong white noise, what the approximate distribution of

̂𝛾(ℎ) = 1
𝑇

𝑇 −ℎ
∑
𝑡=1

𝑋𝑡𝑋𝑡+ℎ⎵⎵⎵
not iid

+𝑜𝑝(1)

𝑋𝑡𝑋𝑡+ℎ = 𝑌𝑡 is strictly stationary.

• Only way to understand how {𝑋𝑡}𝑡∈Z behaves, we have to observe replicates of the process.

• If process is suitably “weakly dependent,” then we can observe replicates of the process by viewing in on
overlapping windows.

DEFINITION 2.3.1: 𝑚-dependent

We say a time series {𝑋𝑡}𝑡∈Z is 𝑚-dependent for a positive integer 𝑚, if for all

𝑡1 < 𝑡2 < ⋯ < 𝑡𝑑1
< 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑑2

∈ Z

so that 𝑡𝑑1+𝑚 ≤ 𝑠1, then
(𝑋𝑡1

, … , 𝑋𝑡𝑑1
)

is independent of
(𝑋𝑠1

, … , 𝑋𝑠𝑑2
)
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EXAMPLE 2.3.2

𝑋𝑡 = 𝑊𝑡 + 𝜃𝑊𝑡−1 for 𝜃 ∈ R where 𝑊𝑡 is a strong white noise is 2-dependent.

THEOREM 2.3.3: Generalization of the standard CLT to 𝑚-dependent

Suppose 𝑋𝑡 is a strictly stationary and 𝑚-dependent time series for 𝑚 ∈ Z>0 withE[𝑋𝑡] = 0 andE[𝑋2
𝑡 ] < ∞,

then if

𝑆𝑇 = 1√
𝑇

𝑇
∑
𝑡=1

𝑋𝑡 =
√

𝑇𝑋̄𝑇

𝐷
𝑇 →∞
−−−→ 𝒩(0, 𝜎2

𝑚)

where
𝜎2

𝑚 =
𝑚

∑
ℎ=−𝑚

𝛾(ℎ) = 𝛾(0) + 2
𝑚

∑
ℎ=1

𝛾(ℎ)

Note that 𝜎2
𝑚 is just the variance of 𝑆𝑇 and can be easily calculated.

DEFINITION 2.3.4: Triangular array

We say {𝑋𝑖,𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑖, 1 ≤ 𝑖 < ∞} forms a triangular array of mean zero 𝐿2 random variables, if
E[𝑋𝑖,𝑗] = 0, E[𝑋2

𝑖,𝑗] < ∞, and for each 𝑖-fixed we have 𝑋𝑖,1, … , 𝑋𝑖,𝑛𝑖
are independent with 𝑛𝑖 < 𝑛𝑖+1.

Visually, row-wise random variables are independent:
𝑋1,1 ⋯ 𝑋1,𝑛1
𝑋2,1 ⋯ ⋯ 𝑋2,𝑛2

⋮ ⋱ ⋱ ⋱

THEOREM 2.3.5: Linderberg-Feller CLT for Triangular Arrays

Let {𝑋𝑖,𝑗, 1 ≤ 𝑗 ≤ 𝑛𝑖, 1 ≤ 𝑖 < ∞} be a triangular array of mean zero 𝐿2 random variables. Define

𝜎2
𝑖 =

𝑛
∑
𝑗=1

V(𝑋𝑖,𝑗)

and

𝑆𝑖 = 1
𝜎𝑖

𝑛𝑖

∑
𝑗=1

𝑋𝑖,𝑗

If for 𝜀 > 0,
1
𝜎2

𝑖

𝑛𝑖

∑
𝑗=1

E[𝑋2
𝑖,𝑗I{|𝑋𝑖,𝑗| > 𝜀𝜎𝑖}]

𝑖→∞
−−−→ 0

then
𝑆𝑖

𝐷
→ 𝒩(0, 1)

Proof of Theorem 2.3.3

Bernstein Blocking Argument: we take a given time series of length 𝑇.
Let 𝑎𝑇 = big block size and 𝑚 = little block size. We assume 𝑎𝑇 → ∞ as 𝑇 → ∞, but

𝑎𝑇
𝑇

→ 0. Then,

𝑁 = number of blocks = ⌊ 𝑇
𝑀 + 𝑎𝑇

⌋

𝐵𝑗 = {𝑖 ∶ (𝑗 − 1)(𝑎𝑇 + 𝑚) + 1 ≤ 𝑖 ≤ 𝑗𝑎𝑇 + (𝑗 − 1)𝑚}
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𝑏𝑗 = {𝑖 ∶ 𝑗𝑎𝑇 + (𝑗 − 1)𝑚 + 1 ≤ 𝑖 ≤ 𝑗(𝑎𝑇 + 𝑚)}

Since 𝑎𝑇 is increasing up to infinity, for 𝑇 sufficiently large, 𝑎𝑇 > 𝑚, and so by 𝑚-dependence,

∑
𝑡∈𝐵𝑗

𝑋𝑡

is independent of
∑
𝑡∈𝐵𝑘

𝑋𝑡 (𝑗 ≠ 𝑘)

similarly for 𝐵𝑗, 𝐵𝑘 → 𝑏𝑗, 𝑏𝑘.

1√
𝑇

𝑇
∑
𝑡=1

𝑋𝑡 = 1√
𝑇

𝑁
∑
𝑗=1

∑
𝑡∈𝐵𝑗

𝑋𝑡 + 1√
𝑇

𝑁
∑
𝑗=1

∑
𝑡∈𝑏𝑗

𝑋𝑡
⎵

iid

+Remainder = 𝐺1 + 𝐺2 + 𝐺3

We want to show the big blocks dominate.

V(𝐺2) = 1
𝑇

𝑁
∑
𝑗=1

E[(∑
𝑡∈𝑏𝑗

𝑋𝑡)
2

] = 𝑁
𝑇
E[(

𝑚
∑
𝑡=1

𝑋𝑡)
2

]

due to strict stationarity.
Also,

E[(
𝑚

∑
𝑡=1

𝑋𝑡)
2

] =
𝑚

∑
𝑡=1

𝑚
∑
𝑠=1

E[𝑋𝑡𝑋𝑠] =
𝑚

∑
𝑡=1

𝑚
∑
𝑠=1

𝛾(|𝑡 − 𝑠|)

Let ℎ = 𝑡 − 𝑠, set of possible values for ℎ is 𝑚 − |ℎ|, so

=
𝑚−1
∑

ℎ=1−𝑚
(𝑚 − |ℎ|)𝛾(ℎ) < ∞

noting that 𝛾(ℎ) = 𝛾(−ℎ), therefore for 𝐶 as a constant, we have

V(𝐺2) = 𝑁
𝑇

𝐶 =
⌊ 𝑇

𝑎𝑇 + 𝑚
⌋

𝑇
(𝐶)

𝑎𝑇→∞
−−−−→ 0

and hence 𝐺2 = 𝑜𝑝(1).
Let’s deal with the big block terms. Notice

𝐺1 = 1√
𝑇

𝑁
∑
𝑗=1

∑
𝑡∈𝐵𝑗

𝑋𝑡 =
𝑁

∑
𝑗=1

∑𝑡∈𝐵𝑗
𝑋𝑡

√
𝑇

=
𝑁

∑
𝑗=1

𝑌𝑗

where 𝑌𝑗 is a triangular array. So, V(𝐺1) = ∑𝑁
𝑗=1 V(𝑌𝑗).

V(𝑌𝑗) = V(𝑌1)

= 1
𝑇
E[(

𝑎𝑇

∑
𝑡=1

𝑋𝑡)
2

]

= 1
𝑇

𝑎𝑇

∑
𝑡=1

𝑎𝑇

∑
𝑠=1

E[𝑋𝑡𝑋𝑠]

= 1
𝑇

𝑎𝑇−1

∑
ℎ=1−𝑎𝑇

(𝑎𝑇 − |ℎ|)𝛾(ℎ)
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Note that since the process is 𝑚-dependent, 𝛾(ℎ) = 0 if |ℎ| ≥ 𝑚. Continuing,

1
𝑇

𝑎𝑇−1

∑
ℎ=1−𝑎𝑇

(𝑎𝑇 − |ℎ|)𝛾(ℎ) =
𝑚

∑
ℎ=−𝑚

(𝑎𝑇 − |ℎ|)𝛾(ℎ)

Therefore,

V(𝐺1) = 𝑁
𝑇⎵

≈1/𝑎𝑇

𝑚
∑

ℎ=−𝑚
(𝑎𝑇 − |ℎ|)𝛾(ℎ)

𝑇 →∞
−−−→

𝑚
∑

ℎ=−𝑚
𝛾(ℎ)

Therefore, the variance of 𝐺1 is bounded. We showed 𝜎2
𝑁 = V(𝐺1) ≈ constant. So, we must show

𝑁
∑
𝑗=1

E[𝑌 2
𝑗⎵

iid

I{|𝑌𝑗| > 𝜀𝜎𝑁}] = 𝑁E[𝑌 2
1 I{|𝑌1| > 𝜀𝜎𝑁}]

𝑇 →∞
−−−→ 0

Aside: For 𝛿 > 0,

E[|𝑌 |2+𝛿] ≥ E[|𝑌 |2+𝛿I{|𝑌 | > 𝜀}]

≥ 𝜀𝛿 E[|𝑌 |2I{|𝑌 | > 𝜀}]

⟹ E[|𝑌 |2I{|𝑌 | > 𝜀}] ≤
E[|𝑌 |2+𝛿]

𝜀𝛿

It may be shown that for 𝐶 > 0

E[|𝑌𝑗|2+𝛿] ≤ 𝐶(𝑎𝑇
𝑇

)
2+𝛿

2

So

𝑁E[𝑌 2
1 I{|𝑌1| > 𝜀𝜎𝑁}] ≤ 𝑁

(𝜀𝜎𝑁)𝛿 𝐶(𝑎𝑇
𝑇

)
2+𝛿

2

= 𝐶
(𝜀𝜎𝑁)𝛿

𝑁𝑎𝑇
𝑇

(𝑎𝑇
𝑇

)
𝛿/2

𝑇 →∞
−−−→ 0

Therefore, by Theorem 2.3.3
𝐺1
𝜎𝑁

𝐷
𝑇 →∞
−−−→ 𝒩(0, 1)

and since
𝜎2

𝑁 →
𝑚

∑
𝑗=−𝑚

𝛾(𝑗)

we have
𝐺1

𝐷
→ 𝒩(0,

𝑚
∑

ℎ=−𝑚
𝛾(ℎ))

Since 𝐺2 = 𝑜𝑝(1) we have
1√
𝑇

𝑇
∑
𝑡=1

𝑋𝑡
𝐷
→ 𝒩(0,

𝑛
∑

ℎ=−𝑚
𝛾(ℎ))
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2.4 † 2 + 𝛿 Moment Calculation
We want to show

E[|𝑌1|2+𝛿] ≤ 𝐶(𝑎𝑇
𝑇

)
2+𝛿

2

where

𝑌1 = 1√
𝑇

𝑎𝑇

∑
𝑡=1

𝑋𝑡

𝑎𝑇 = big block size → ∞ as 𝑇 → ∞
𝑎𝑇
𝑇

→ 0

𝑋𝑡 are 𝑚-dependent random variables.

E[|𝑋𝑖|2+𝛿] < ∞ (𝛿 > 0) ⟺ E[∣
𝑎𝑇

∑
𝑡=1

𝑋𝑡∣
2+𝛿

] ≤ 𝐶𝑎
2+𝛿

2
𝑇

THEOREM 2.4.1: Rosenthal’s Inequality

If 𝑋1, … , 𝑋𝑛 are independent random variables with E[|𝑋𝑖|2+𝛿] < ∞ for 𝛿 > 0, then

E[∣
𝑛

∑
𝑖=1

𝑋𝑖∣
2+𝛿

] < 𝑐𝑝𝑛𝛿/2
𝑛

∑
𝑖=1

E[|𝑋𝑖|2+𝛿]

In particular, if 𝑋1, … , 𝑋𝑛 are i.i.d., then

E[∣
𝑛

∑
𝑖=1

𝑋𝑖∣
2+𝛿

] ≤ 𝑐𝑝𝑛 2+𝛿
2 E[|𝑋1|2+𝛿]

Proof of Theorem 2.4.1

See Petrov, Limit theorems of Probability Theory, p.g. 59.

PROPOSITION 2.4.2

For arbitrary random variables 𝑋1, … , 𝑋𝑛,

E[∣
𝑛

∑
𝑖=1

𝑋𝑖∣
2+𝛿

] ≤ 𝑛(2+𝛿)−1
𝑛

∑
𝑖=1

E[|𝑋𝑖|2+𝛿]

Proof of Proposition 2.4.2

Since 𝜑(𝑥) = |𝑥|2+𝛿 is convex where 𝑎1, … , 𝑎𝑛 ∈ R, by Jensen’s Inequality,

∣ 1
𝑛

𝑛
∑
𝑖=1

𝑎𝑖∣
2+𝛿

≤ 1
𝑛

𝑛
∑
𝑖=1

|𝑎𝑖|2+𝛿

Rearranging yields

∣
𝑛

∑
𝑖=1

𝑎𝑖∣
2+𝛿

≤ 𝑛(2+𝛿)−1
𝑛

∑
𝑖=1

|𝑎𝑖|2+𝛿

Replace 𝑎𝑖 ∼ 𝑋𝑖, take expectation.
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𝑎𝑇

∑
𝑡=1

𝑋𝑡 =
𝑚

∑
𝑗=0

∑
𝑡≡𝑗 (mod 𝑚+1)

1≤𝑡≤𝑎𝑇

𝑋𝑡

Variables in the second sum are separated by at least 𝑚-time steps, and hence i.i.d. Therefore,

E[∣
𝑎𝑇

∑
𝑡=1

𝑋𝑡∣
2+𝛿

] ≤ (𝑚 + 1)(2+𝛿)−1 E
⎡
⎢⎢
⎣

∣ ∑
𝑡≡𝑗 (mod 𝑚+1)

1≤𝑡≤𝑎𝑇

𝑋𝑡∣
2+𝛿⎤

⎥⎥
⎦

by Proposition 2.4.2

≤ (𝑚 + 1)(2+𝛿)−1( 𝑎𝑇
𝑚 + 1

)
2+𝛿

2

E[|𝑋1|2+𝛿] by Theorem 2.4.1

= 𝐶𝑎
2+𝛿

2
𝑇

where 𝐶 is the same constant as in Section 2.3.

2.5 † Linear Process CLT

EXAMPLE 2.5.1

𝑋𝑡 =
𝑚

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ where {𝑊𝑡}𝑡∈Z is a strong white noise in 𝐿2.

A general linear process 𝑋𝑡 =
𝑚

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ is not 𝑚-dependent.

THEOREM 2.5.2: Basic Approximation Theorem (BAT)

Suppose 𝑋𝑛 is a sequence of random variables so that there exists an array

{𝑌𝑚,𝑛 ∶ 𝑚, 𝑛 ∈ Z≥1}

so that:
(1) For each fixed 𝑚, 𝑌𝑚,𝑛

𝐷
→ 𝑌𝑚 as 𝑛 → ∞.

(2) 𝑌𝑚
𝐷
→ 𝑌 as 𝑚 → ∞ for some random variable 𝑌.

(3) For all 𝜀 > 0,
lim

𝑚→∞
[lim sup

𝑛→∞
P(|𝑋𝑛 − 𝑌𝑚,𝑛 > 𝜀|)] = 0

Then 𝑋𝑛
𝐷
→ 𝑌 as 𝑛 → ∞.

REMARK 2.5.3

𝑌𝑚,𝑛 is often an “𝑚-dependent” approximation to 𝑋𝑛

Proof of Theorem 2.5.2

Shumway and Stoffer using characteristic functions.
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THEOREM 2.5.4: Linear Process CLT

Suppose 𝑋𝑡 = ∑∞
ℓ=0 𝜓ℓ𝑊𝑡−ℓ is a causal linear process with ∑∞

ℓ=0|𝜓ℓ| < ∞ with {𝑊𝑡}𝑡∈Z is a strong white
noise in 𝐿2. If

𝑆𝑡 = 1√
𝑇

𝑇
∑
𝑡=1

𝑋𝑡

then

𝑆𝑇

𝐷
𝑇 →∞
−−−→ 𝒩(0,

∞
∑

ℓ=−∞
𝛾(ℓ))

Proof of Theorem 2.5.4

𝑋𝑡 is strictly (and weakly) stationary.

𝛾(ℎ) = E[𝑋𝑡𝑋𝑡+ℎ]

= E[(
∞

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ)(
∞

∑
𝑗=0

𝜓𝑗𝑊𝑡+ℎ−𝑗)]

=
∞

∑
ℓ=0

∞
∑
𝑗=0

𝜓ℓ𝜓𝑗 E[𝑊𝑡−ℓ𝑊𝑡+ℎ−𝑗] Fubini’s Theorem

=
∞

∑
ℓ=0

𝜓ℓ𝜓ℓ+ℎ𝜎2
𝑊

Then,
∞

∑
ℎ=−∞

𝛾(ℎ) =
∞

∑
ℎ=−∞

∣
∞

∑
ℓ=0

𝜓ℓ𝜓ℓ+ℎ𝜎2
𝑊∣ ≤

∞
∑
ℓ=0

|𝜓ℓ|
∞

∑
ℎ=−∞

|𝜓ℎ|𝜎2
𝑊 < ∞

by the Triangle Inequality. So ∑∞
ℎ=−∞ 𝛾(ℎ) is well-defined. Note that E[𝑆𝑇] = 0 since E[𝑋𝑡] = 0. Also,

V(𝑆𝑇) = 1
𝑇

𝑇
∑
𝑡=1

𝑇
∑
𝑠=1

E[𝑋𝑡𝑋𝑠] = 1
𝑇

𝑇 −1
∑

ℎ=1−𝑇
(𝑇 − |ℎ|)𝛾(ℎ) =

𝑇 −1
∑

ℎ=1−𝑇
(1 − |ℎ|

𝑇
)𝛾(ℎ)

Note that (1 − |ℎ|
𝑇

) ≤ |𝛾(ℎ)| since {|𝛾(ℎ)|} is summable by Dominated Convergence Theorem (DCT).

Define
𝑋𝑡,𝑚 =

𝑚
∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ

𝑆𝑇 ,𝑚 = 1√
𝑇

𝑇
∑
𝑡=1

𝑋𝑡,𝑚

is an 𝑚-dependent approximation to 𝑆𝑇.
(1) By the 𝑚-dependent CLT,

𝑆𝑇 ,𝑚
𝐷
→ 𝒩(0,

𝑚
∑

ℎ=−𝑚
𝛾𝑚(ℎ)) ≔ 𝑆′

𝑚

and 𝛾𝑚(ℎ) = E[𝑋𝑡,𝑚𝑋𝑡+ℎ,𝑚].
(2) By DCT,

𝑚
∑

ℎ=−𝑚
𝛾𝑚(ℎ)

𝑚→∞
−−−−→

∞
∑

ℎ=−∞
𝛾(ℎ)

and hence
𝑆′

𝑚
𝐷
→ 𝒩(0,

∞
∑

ℎ=−∞
𝛾(ℎ))
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(3)

E[(𝑆𝑇 ,𝑚 − 𝑆𝑇)2] = 1
𝑇
E[(

𝑇
∑
𝑡=1

(𝑋𝑡 − 𝑋𝑡,𝑚))
2

]

≤
𝑇 −1
∑

ℎ=1−𝑇
(1 − |ℎ|

𝑇
)

∞
∑

ℓ=𝑚+1
|𝜓ℓ||𝜓ℓ+ℎ|𝜎2

𝑊

≤
∞

∑
ℓ=𝑚+1

|𝜓ℓ|(
∞

∑
ℎ=−∞

|𝜓ℎ|)𝜎2
𝑊

𝑚→∞
−−−−→ 0

So condition (3) of the BAT is satisfied using Markov’s Inequality. Therefore,

𝑆𝑇 = 1√
𝑇

𝑇
∑
𝑡=1

𝑋𝑡
𝐷
→ 𝒩(0,

∞
∑

ℎ=−∞
𝛾(ℎ))

2.6 Asymptotic Properties of Empirical ACF
If 𝑋1, … , 𝑋𝑇 is an observed time series in which we think was generated by a stationary process, then
𝛾(ℎ) = Cov(𝑋𝑡, 𝑋𝑡+ℎ) does not depend on 𝑡. Recall that

̂𝛾(ℎ) = 1
𝑇

𝑇 −ℎ
∑
𝑡=1

(𝑋𝑡 − 𝑋̄)(𝑋𝑡+ℎ − 𝑋̄)

𝜌(ℎ) = Corr(𝑋𝑡, 𝑋𝑡+ℎ) = 𝛾(ℎ)
𝛾(0)

̂𝜌(ℎ) = ̂𝛾(ℎ)
̂𝛾(0)

Questions
(1) Are ̂𝛾 and ̂𝜌 consistent?

(2) What is the approximate distribution of ̂𝛾(ℎ) and ̂𝜌(ℎ).

Consistency
By adding and subtracting 𝜇 in the definition of ̂𝛾(ℎ), we may assume without loss of generality that E[𝑋𝑡] =
0.

Suppose {𝑋𝑡}𝑡∈Z is strictly stationary, and

𝑋𝑡 = 𝑔(𝑊𝑡, 𝑊𝑡−1, …)

We first need to establish the consistency of

𝑋̄ = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑡

where 𝑋𝑡’s are not i.i.d. so Law of Large numbers does not work. Instead, we would use the Ergodic Theorem,
but we will not cover it here. Therefore,

𝑋̄
𝑃
→ 0
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Furthermore,

̂𝛾(ℎ) = 1
𝑇

𝑇 −ℎ
∑
𝑡=1

(𝑋𝑡 − 𝑋̄)(𝑋𝑡+ℎ − 𝑋̄)

= 1
𝑇

𝑇 −ℎ
∑
𝑡=1

𝑋𝑡𝑋𝑡+ℎ − 𝑋̄ 1
𝑇

𝑇 −ℎ
∑
𝑡=1

𝑋𝑡 − 𝑋̄ 1
𝑇

𝑇 −ℎ
∑
𝑡=1

𝑋𝑡+ℎ + 𝑇 − ℎ
𝑇

(𝑋̄)2

where we note that the last three terms converge in probability to 0 by the Ergodic Theorem.

Also, note that E[𝑋𝑡𝑋𝑡+ℎ] = 𝛾(ℎ) and 𝑋𝑡𝑋𝑡+ℎ = 𝑔ℎ(𝑊𝑡+ℎ, 𝑊𝑡+ℎ−1, …).

Again, by the Ergodic Theorem,
1
𝑇

𝑇 −ℎ
∑
𝑡=1

𝑋𝑡𝑋𝑡+ℎ
𝑃
→ 𝛾(ℎ)

Therefore, ̂𝛾(ℎ)
𝑃
→ 𝛾(ℎ) and ̂𝜌(ℎ) = ̂𝛾(ℎ)

̂𝛾(0)
𝑃
→ 𝜌(ℎ) under strict stationarity and E[𝑋2

𝑡 ] < ∞.

Distribution of ̂𝛾(ℎ)
Consider simple (but most important case) when {𝑋𝑡}𝑡∈Z is a strong white noise with E[𝑋4

𝑡 ] < ∞. The finite 4th
moment assumption is not really assumed here, but this will be explained why it’s classically assumed.

̂𝛾(ℎ)
𝑃
→ 0

Similarly,

̂𝛾(ℎ) = 1
𝑇

𝑇 −ℎ
∑
𝑡=1

𝑋𝑡𝑋𝑡+ℎ
⎵⎵⎵⎵⎵⎵

𝛾̃(ℎ)

+𝑅

Note that E[ ̃𝛾(ℎ)] = 0 for ℎ ≥ 1. Also,

V( ̃𝛾(ℎ)) = E[ ̃𝛾2(ℎ)] = 1
𝑇 2

𝑇 −ℎ
∑
𝑡=1

𝑇 −ℎ
∑
𝑠=1

E[𝑋𝑡𝑋𝑡+ℎ𝑋𝑠𝑋𝑠+ℎ]

is non-zero only when 𝑡 = 𝑠, so

V( ̃𝛾(ℎ)) = 1
𝑇 2

𝑇 −ℎ
∑
𝑡=1

E[𝑋2
𝑡 𝑋2

𝑡+ℎ] = 𝑇 − ℎ
𝑇 2 𝜎4

𝑋

where E[𝑋2
𝑡 ] = 𝜎2

𝑋. Therefore,
V(

√
𝑇 ̃𝛾(ℎ))

𝑇 →∞
−−−→ 𝜎4

𝑋

THEOREM 2.6.1

If {𝑋𝑡}𝑡∈Z is a strong white noise with E[𝑋4
𝑡 ] < ∞, then

√
𝑇 ̃𝛾(ℎ) = 1√

𝑇

𝑇 −ℎ
∑
𝑡=1

𝑋𝑡𝑋𝑡+ℎ
𝐷
→ 𝒩(0, 𝜎4

𝑋)

Proof of Theorem 2.6.1

Using Martingale CLT which is derived from 𝑚-dependent CLT.
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COROLLARY 2.6.2

It follows that if √
𝑇 ̂𝛾

𝐷
→ 𝒩(0, 𝜎4

𝑋)

and ̂𝛾(0)
𝑃
→ 𝜎2

𝑋 (SLLN), then by Slutsky’s Theorem,

√
𝑇 ̂𝛾(ℎ)

̂𝛾(0)
=

√
𝑇 ̂𝜌(ℎ)

𝐷
→ 𝒩(0, 1)

If {𝑋𝑡}𝑡∈Z is a strong white noise,

(−
𝑧𝛼/2√

𝑇
,

𝑧𝛼/2√
𝑇

)

is a (1 − 𝛼) prediction interval for ̂𝜌(ℎ) for all ℎ with 𝑇 large where 𝛷(𝑧𝛼/2) = 1 − 𝛼. Hence,

(−1.96√
𝑇

, 1.96√
𝑇

)

is an approximate 95% prediction interval for ̂𝜌(ℎ) assuming the data is generated by a strong white noise
process.

Now, we know that the blue boundaries are ±1.96√
𝑇

in Figure 2.1. Also, we might be able to say that exists

mild serial correlation at lag 1 of the ACF for Figure 2.2 since there are lines that go outside the blue
boundaries.
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Figure 2.2: ACF of first differenced temperature data

# Figure 2.2
plot(acf(diff(gtemp)))

2.7 Interpreting the Autocorrelation Function (Non-stationary)
We have an excellent understanding of how ̂𝜌(ℎ) behaves when 𝑋1, … , 𝑋𝑇 is a strong white noise.
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• Consistency:

̂𝜌(ℎ)
𝑃
→ 0 (ℎ ≥ 1)

• Distribution:
̂𝜌(ℎ) 𝐷≈ 𝒩(0, 1

𝑇
) (𝑇 is large)

What happens when we calculate the empirical ACF for a non-stationary time series?

EXAMPLE 2.7.1

𝑋𝑡 = 𝑡 + 𝑊𝑡 where 𝑊𝑡 is a strong white noise. Note that 𝑋𝑡 has a linear trend, and hence not stationary.
First,

𝑋̄ = 1
𝑇

𝑇
∑
𝑡=1

[𝑡 + 𝑊𝑡] = 1
𝑇

[𝑇 (𝑇 + 1)]
2

+ 𝑊̄ = 𝑇 + 1
2

+ 𝑊̄

Also,

̂𝛾(ℎ) = 1
𝑇

𝑇 −ℎ
∑
𝑡=1

(𝑡 + 𝑊𝑡 − 𝑇 + 1
2

− 𝑊̄)(𝑡 + ℎ + 𝑊𝑡+ℎ − 𝑇 + 1
2

− 𝑊̄)

= 1
𝑇

𝑇 −ℎ
∑
𝑡=1

(𝑡 − 𝑇 + 1
2

)(𝑡 + ℎ − 𝑇 + 1
2

) + 𝑅

= 1
𝑇

𝑇 −ℎ
∑
𝑡=1

(𝑡 − 𝑇 + 1
2

)
2

+ 1
𝑇

𝑇 −ℎ
∑
𝑡=1

ℎ(𝑡 − 𝑇 + 1
2

)

= 1
𝑇

𝑇 /2

∑
𝑡=1

𝑡2 + ℎ
𝑇

[(𝑇 − ℎ)(𝑇 − ℎ + 1)
2

− (𝑇 + 1)(𝑇 − ℎ)
2

]

≈ 𝒪(𝑇 2) + 𝒪(𝑇 )

where 𝑅 is the remainder with the white noise terms. Note that the dominant term; that is, the 𝒪(𝑇 2)
doesn’t depend on ℎ.
It follows that in this case that

̂𝛾(ℎ)
𝑇 2

𝑇 →∞
−−−→ 𝐶 (∀ℎ)

Hence
̂𝜌(ℎ) = ̂𝛾(ℎ)

̂𝛾(0)
𝑇 2

𝑇 2 = ̂𝛾(ℎ)
𝑇 2

𝑇 2

̂𝛾(0)
𝑃
→ 1 (∀ℎ)

Moral: If 𝑋𝑡 has a trend that is not properly removed, ̂𝜌(ℎ) is likely to be large.

# Figure 2.3
acf(gtemp)
# Figure 2.4
plot(as.ts(cumsum(rnorm(100))), main = "autoregression, phi=1")
# Figure 2.5
acf(as.ts(cumsum(rnorm(100))))

• Looking back at Figure 1.2, we see that this time series has an upwards trend. Therefore, based on what
we just did, we expect that the ACF should be very large (close to 1) at each lag for this time series.
Clearly, Figure 2.3 is indicative of a strong trend or non-stationarity.

• In Figure 2.4, we are plotting
𝑋𝑡 = 𝑋𝑡−1 + 𝑊𝑡

with 𝑋0 = 0 and 𝑋𝑡 = ∑𝑡
𝑗=1 𝑊𝑗 which is non-stationary. Some people say it has a “stochastic trend.”
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Figure 2.3: ACF of raw temperature data, sample length 130

autoregression, phi=1
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Figure 2.4: Realization of an AR(1) with 𝜙 = 1 starting from 𝑥0 = 0
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Figure 2.5: ACF of an AR(1) with 𝜙 = 1 starting from 𝑥0 = 0

• In Figure 2.5 there exists a similar pattern which is indicative of non-stationarity.



Chapter 3

Week 3

3.1 Moving Average Processes
Suppose 𝑋𝑡 is stationary. Identify serial dependence using ACF ̂𝜌(ℎ). If the lines go out of the dotted blue

boundaries, namely ±1.96√
𝑇
, within the ACF plot of ̂𝜌(ℎ), then we suspect serial dependence.

Posit
𝑋𝑡 = 𝑔(𝑊𝑡, 𝑊𝑡−1, …) =

∞
∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ [Linear Process]

Not feasible to estimate infinitely many parameters {𝜓}∞
ℓ=0. Assume coefficients arise from a parsimonious

linear model for 𝑋𝑡.

DEFINITION 3.1.1: Moving average process

Suppose {𝑊𝑡}∈Z is a strong white noise with V(𝑊𝑡) = 𝜎2
𝑊 < ∞. We say 𝑋𝑡 is a moving average

process of order 𝑞 or MA(𝑞), if there exists 𝜃1, … , 𝜃𝑞 ∈ R with 𝜃𝑞 ≠ 0 such that

𝑋𝑡 = 𝑊𝑡 + 𝜃1𝑊𝑡−1 + ⋯ + 𝜃𝑞𝑊𝑡−𝑞 =
𝑞

∑
ℓ=0

𝜃ℓ𝑊𝑡−ℓ

where 𝜃0 = 1. In other words, we’ve truncated the linear process representation at the level 𝑞.

DEFINITION 3.1.2: Backshift operator

The backshift operator, 𝐵, is defined by

𝐵𝑗𝑋𝑡 = 𝑋𝑡−𝑗

𝐵 is assumed further to be linear in the sense that for 𝑎, 𝑏 ∈ R

(𝑎𝐵𝑗 + 𝑏𝐵𝑘)𝑋𝑡 = 𝑎𝐵𝑗𝑋𝑡 + 𝑏𝐵𝑘𝑋𝑡 = 𝑎𝑋𝑡−𝑗 + 𝑏𝑋𝑡−𝑘

EXAMPLE 3.1.3

• First difference of 𝑋𝑡:

∇𝑋𝑡 = (1 − 𝐵)𝑋𝑡 = 𝑋𝑡 − 𝐵𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1

40
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• Second difference of 𝑋𝑡:

∇2𝑋𝑡 = (1 − 𝐵)2𝑋𝑡 = (1 − 2𝐵 + 𝐵2)𝑋𝑡 = 𝑋𝑡 − 2𝑋𝑡−1 + 𝑋𝑡−2

DEFINITION 3.1.4: Moving average operator

The moving average operator is defined by

𝜃(𝐵) = 1 + 𝜃1𝐵 + 𝜃2𝐵2 + ⋯ + 𝜃𝑞𝐵𝑞

DEFINITION 3.1.5: Moving average polynomial

The moving average polynomial is defined as

𝜃(𝑥) = 1 + 𝜃1𝑥 + ⋯ + 𝜃𝑞𝑥𝑞

If 𝑋𝑡 ∼ MA(𝑞), then
𝑋𝑡 = 𝑊𝑡 + 𝜃1𝑊𝑡−1 + ⋯ + 𝜃𝑞𝑊𝑡−𝑞 = 𝜃(𝐵)𝑊𝑡

which is a succinct expression defining MA(𝑞).

Properties of MA(𝑞) Processes
(1) MA(0) process is a strong white noise.

(2) If 𝑋𝑡 ∼ MA(𝑞), then

E[𝑋𝑡] = E[
𝑞

∑
ℓ=0

𝜃ℓ𝑊𝑡−ℓ] = 0 (𝜃0 = 1)

V(𝑋𝑡) = E[(
𝑞

∑
ℓ=0

𝜃ℓ𝑊𝑡−ℓ)
2

] =
𝑞

∑
ℓ=0

𝜃2
ℓ 𝜎2

𝑊

𝛾(ℎ) = Cov(𝑋𝑡, 𝑋𝑡+ℎ)

= E[(
𝑞

∑
ℓ=0

𝜃ℓ𝑊𝑡−ℓ)(
𝑞

∑
𝑘=0

𝜃𝑘𝑊𝑡+ℎ−𝑘)] 𝑡 − ℓ = 𝑡 + ℎ − 𝑘 ⟹ 𝑘 = ℓ + ℎ

=
⎧{
⎨{⎩

𝜎2
𝑊

𝑞−ℎ

∑
𝑗=0

𝜃𝑗𝜃𝑗+ℎ 1 ≤ ℎ ≤ 𝑞

0 ℎ > 𝑞

Recall that 𝛾(ℎ) = 𝛾(−ℎ), so we will only display the values for ℎ ≥ 0. Note that 𝛾(𝑞) cannot be zero
because 𝜃 ≠ 0. The cutting off of 𝛾(ℎ) after 𝑞 lags is the signature of the MA(𝑞) model. Therefore,

𝜌(ℎ) = 𝛾(ℎ)
𝛾(0)

=
⎧
{
⎨
{
⎩

∑𝑞−ℎ
𝑗=0 𝜃𝑗𝜃𝑗+ℎ

∑𝑞
𝑗=0 𝜃2

𝑗
1 ≤ ℎ ≤ 𝑞

0 ℎ > 𝑞

REMARK 3.1.6

By choosing 𝜃1, … , 𝜃𝑞 appropriately, we can get any ACF we want 𝜌(ℎ) where 1 ≤ ℎ ≤ 𝑞.

(3) If 𝑋𝑡 ∼ MA(𝑞), then 𝑋𝑡 is 𝑞-dependent.
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In Figure 3.1, let’s look an example now of what a moving average process would actually look like if we were
to realize a moving average process. On the top of Figure 3.1, I’ve plotted a moving average process of order 0,
which is just a strong white noise. Then, as we progress down to panel 2 and panel 3 I’ve calculated moving
averages of orders 1 and 2 based on this strong white noise sequence. In the second panel, 𝑋𝑡 = 𝑊𝑡 + 𝑊𝑡−1,
so this is a moving average process of order 1, in which 𝜃1 = 1. In the third panel, we have a moving average
process of order 2, in which 𝑋𝑡 = 𝑊𝑡 + 𝑊𝑡−1 + 𝑊𝑡−2, which is a moving average process of order 2 where
𝜃1 = 𝜃2 = 1. One thing to observe when going from a moving average process of order 0 to 2 is that the time
series is getting “smoother.”
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v
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Figure 3.1: Realizations of MA processes with coefficients equal to 1

# Figure 3.1
par(mfrow = c(3, 1))

ma0.sim <- arima.sim(list(order = c(0, 0, 0), ma = c()), n = 134)
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plot(ma0.sim, ylab = "x", main = "white noise")

ma1.sim <- arima.sim(list(order = c(0, 0, 1), ma = c(1)), n = 134)
plot(ma1.sim, ylab = "v", main = (expression(MA(1) ~ ~ ~ theta[1] == 1)))

ma2.sim <-
arima.sim(list(order = c(0, 0, 2), ma = c(1, 1)), n = 134)

plot(ma2.sim, ylab = "y", main = (expression(paste(
MA(2), ~ ~ ~ theta[1], " = ", theta[2], " = ", 1

))))

In Figure 3.2, the difference is apparent since going from MA(0) to MA(1) shows that MA(1) has significant
serial correlation at lag 1. Similarly, for MA(2) there is significant serial correlation at lag 2.
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Figure 3.2: ACF plots of corresponding moving average series.
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# Figure 3.2
acf(ma0.sim)
acf(ma1.sim)
acf(ma2.sim)

3.2 Autoregressive Processes

DEFINITION 3.2.1: Autoregressive process

Suppose {𝑊𝑡}𝑡∈Z is a strong white noise with V(𝑊𝑡) = 𝜎2
𝑊 < ∞. We say 𝑋𝑡 is an autoregressive

process of order 1, or AR(1), if there exists a constant 𝜙 such that

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡 (𝑡 ∈ Z)

Using the backshift operator, this may also be expressed as

(1 − 𝜙𝐵)𝑋𝑡 = 𝑊𝑡

Interpretation
Prediction: Form a linear model (regression) predicting 𝑋𝑡 as

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡

where 𝑋𝑡 is the dependent variable and 𝑋𝑡−1 is the covariant/independent variable.

Markov Property:
𝑋𝑡 ∣ (𝑋𝑡−1, 𝑋𝑡−2, …) = 𝑋𝑡 ∣ 𝑋𝑡−1

Question: Does there exist a stationary process 𝑋𝑡 satisfying the following?

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡

Let’s see.

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡

= 𝜙(𝜙𝑋𝑡−2 + 𝑊𝑡−1) + 𝑊𝑡

= 𝜙2𝑋𝑡−2 + 𝜙𝑊𝑡−1 + 𝑊𝑡

⋮ 𝑘 times

= 𝜙𝑘𝑋𝑡−𝑘 + ∑𝑘−1
𝑗=0 𝜙𝑗𝑊𝑡−𝑗 if |𝜙| > 1, the sum diverges

Suppose |𝜙| < 1, then
𝐿2-sense
−−−−−→

𝑘→∞
0 +

∞
∑
𝑗=0

𝜙𝑗𝑊𝑡−𝑗
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which is a causal linear process. Moreover, if 𝑋𝑡 = ∑∞
𝑗=0 𝜙𝑗𝑊𝑡−𝑗, then 𝑋𝑡 is strictly stationary, and

𝑋𝑡 =
∞

∑
𝑗=0

𝜙𝑗𝑊𝑡−𝑗

=
∞

∑
𝑗=1

𝜙𝑗𝑊𝑡−𝑗 + 𝑊𝑡

= 𝜙
∞

∑
𝑗=1

𝜙𝑗−1𝑊𝑡−𝑗 + 𝑊𝑡 𝑗 → 𝑗 − 1

= 𝜙
∞

∑
𝑗=0

𝜙𝑗𝑊𝑡−1−𝑗 + 𝑊𝑡

= 𝜙𝑋𝑡−1 + 𝑊𝑡

Therefore, 𝑋𝑡 satisfies AR(1) equation.

THEOREM 3.2.2

If |𝜙| < 1, then there exists a strictly stationary and causal linear process 𝑋𝑡 such that

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡

What if |𝜙| > 1? If 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡 for 𝑡 ∈ Z, then that implies

𝑋𝑡 = 𝜙−1𝑋𝑡+1 − 𝜙−1𝑊𝑡+1

= 𝜙−1(𝜙−1𝑋𝑡+1 − 𝜙−1𝑊𝑡+1) − 𝜙−1𝑊𝑡+1

⋮ 𝑘 times

= 𝜙−𝑘𝑋𝑡+𝑘 − ∑𝑘−1
𝑗=1 𝜙−𝑗𝑊𝑡+𝑗

Therefore,

𝑋𝑡 =
𝑋𝑡+𝑘
𝜙𝑘 −

𝑘−1
∑
𝑗=1

𝑊𝑡+𝑗

𝜙𝑗
𝐿2-sense
−−−−−→

𝑘→∞
−

∞
∑
𝑗=1

𝑊𝑡+𝑗

𝜙𝑗

since
∞

∑
𝑗=1

1
𝜙𝑗 < ∞. This sequence is strictly stationary since it is a Bernoulli shift. However, what we have

derived is not desirable as this model is future dependent, normally we try to avoid this.

What if |𝜙| = 1? In this case we claim that there is no stationary process such that 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡. Let’s
prove this. Suppose |𝜙| = 1. If 𝑋𝑡 = 𝑋𝑡−1 + 𝑊𝑡, then

𝑋𝑡 =
𝑡

∑
𝑗=1

𝑊𝑗 + 𝑋0 (by iterating) ⟹ 𝑋𝑡 − 𝑋0 =
𝑡

∑
𝑗=1

𝑊𝑗 [Random Walk]

Now, ∣Cov(𝑋𝑡, 𝑋0)∣2 ≤ V(𝑋𝑡)V(𝑋0) = (V(𝑋0))2, so we get

∣Cov(𝑋𝑡, 𝑋0)∣ ≤ √V(𝑋𝑡)V(𝑋0) = √(V(𝑋0))2 = V(𝑋0)

Therefore, −2Cov(𝑋𝑡, 𝑋0) ≤ 2∣Cov(𝑋𝑡, 𝑋0)∣ ≤ 2V(𝑋0). Finally,

V(𝑋𝑡 − 𝑋0) = V(𝑋𝑡) + V(𝑋0) − 2Cov(𝑋𝑡, 𝑋0) ≤ 4V(𝑋0)

where in the last inequality we used the fact that 𝑋𝑡 is stationary. Furthermore,

V(
𝑡

∑
𝑗=1

𝑊𝑗) = 𝑡𝜎2
𝑊

𝑡→∞
−−−→ ∞
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Properties of Causal AR(1) for |𝜙| < 1
(1) The span of dependence of 𝑋𝑡 is “infinite”

𝑋𝑡 =
∞

∑
ℓ=0

𝜙ℓ𝑊𝑡−ℓ

(2) ACF.

V(𝑋𝑡) = E[(
∞

∑
ℓ=0

𝜙ℓ𝑊𝑡−ℓ)
2

] =
∞

∑
ℓ=0

𝜙2ℓ𝜎2
𝑊 = 𝜎2

𝑊
1 − 𝜙2

𝛾(ℎ) = Cov(𝑋𝑡, 𝑋𝑡+ℎ)

= E[(
∞

∑
ℓ=0

𝜙ℓ𝑊𝑡−ℓ)(
∞

∑
𝑘=0

𝜙𝑘𝑊𝑡+ℎ−𝑘)]

=
∞

∑
ℓ=0

𝜙ℓ𝜙ℓ+ℎ𝜎2
𝑊

= 𝜙ℎ
∞

∑
ℓ=0

𝜙2ℓ𝜎2
𝑊

= 𝜙ℎ( 𝜎2
𝑊

1 − 𝜙2 )

where in the first sum we let 𝑡 − ℓ = 𝑡 + ℎ − 𝑘 and in the second sum we let 𝑘 = ℓ + ℎ for ℓ = 0, 1, 2, ….
Hence,

𝜌(ℎ) = 𝛾(ℎ)
𝛾(0)

= 𝜙ℎ (ℎ ≥ 0)

Note: this decays geometrically in the lag parameter.

# Figure 3.3
ar0.sim <- arima.sim(list(order = c(1, 0, 0), ar = c(0.5)), n = 134)
plot(ar0.sim, ylab = "x", main = (expression(AR(1) ~ ~ ~ phi[1] == 0.5)))

ar1.sim <- arima.sim(list(order = c(1, 0, 0), ar = c(0.9)), n = 134)
plot(ar1.sim, ylab = "y", main = (expression(AR(1) ~ ~ ~ phi[1] == 0.9)))

ar2.sim <-
arima.sim(list(order = c(1, 0, 0), ar = c(-0.9)), n = 134)

plot(ar2.sim, ylab = "z", main = (expression(AR(1) ~ ~ ~ phi[1] == -0.9)))

# Figure 3.4
acf(ar0.sim)
acf(ar1.sim)
acf(ar2.sim)

DEFINITION 3.2.3: Autoregressive process, Autoregressive polynomial

We say 𝑋𝑡 follows an autoregressive process of order 𝑝, or AR(𝑝), if there exists coefficients 𝜙1, … , 𝜙𝑝 ∈
R with 𝜙𝑝 ≠ 0 such that

𝑋𝑡 = 𝜙1𝑋𝑡−1 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝑊𝑡

We also define the autoregressive polynomial to be

𝜙(𝑥) = 1 − 𝜙1𝑥 − ⋯ − 𝜙𝑝𝑥𝑝

𝑋𝑡 ∼ AR(𝑝) if 𝜙(𝐵)𝑋𝑡 = 𝑊𝑡.
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Figure 3.3: Realizations of AR(1) processes
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Figure 3.4: Corresponding ACF plots
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3.3 ARMA Processes
We’ve seen the moving average polynomial:

𝜃(𝑥) = 1 + 𝜃1𝑥 + ⋯ + 𝜃𝑞𝑥𝑞 (𝜃𝑞 ≠ 0)

and the autoregressive polynomial:

𝜙(𝑥) = 1 − 𝜙1𝑥 − ⋯ − 𝜙𝑝𝑥𝑝 (𝜙𝑝 ≠ 0)

If 𝑊𝑡 ∼ strong white noise
𝑋𝑡 = 𝜃(𝐵)𝑊𝑡 (𝑋𝑡 ∼ MA(𝑞))
𝜙(𝐵)𝑋𝑡 = 𝑊𝑡 (𝑋𝑡 ∼ AR(𝑝))

Why not combine the two?

DEFINITION 3.3.1: Autoregressive moving average

Given a strong white noise sequence 𝑊𝑡, we say that 𝑋𝑡 is an autoregressive moving average process
of orders 𝑝 and 𝑞, or ARMA(𝑝, 𝑞), if 𝑋𝑡 is stationary and

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑊𝑡

𝜙(𝑧) = 1 − 𝜙1𝑧 − ⋯ − 𝜙𝑝𝑧𝑝 (𝜙𝑝 ≠ 0)

𝜃(𝑧) = 1 + 𝜃1𝑧 + ⋯ + 𝜃𝑞𝑧𝑞 (𝜃𝑞 ≠ 0)

This implies that the model is

𝑋𝑡 = 𝜙1𝑋𝑡−1 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝑊𝑡 + 𝜃1𝑊𝑡−1 + ⋯ + 𝜃𝑞𝑊𝑡−𝑞

Using ARMA models to model autocorrelation: ARMA combines the following two points.

• MA(𝑞): ACF may be specified at lags 1, … , 𝑞

• AR(𝑝): ACF has geometric decay/oscillations

REMARK 3.3.2: Parameter redundancy

Consider 𝑋𝑡 = 𝑊𝑡 where 𝑋𝑡 ∼ MA(0), then

0.5𝑋𝑡−1 = 0.5𝑊𝑡−1

Therefore,
𝑋𝑡 − 0.5𝑋𝑡−1 = 𝑊𝑡 − 0.5𝑊𝑡−1 ⟹ 𝑋𝑡 ∼ ARMA(1, 1)

𝜙(𝑧) = 1 − 0.5𝑧 ⟹ zero of 𝜙 is 𝑧0 = 2

𝜃(𝑧) = 1 − 0.5𝑧 ⟹ zero of 𝜃 is 𝑧0 = 2

Parameter redundancy manifests as shared zeros in 𝜙 and 𝜃. We always assume the models are “reduced”
by factoring and diving away common zeros in 𝜙.

DEFINITION 3.3.3: Causal ARMA

We say an ARMA(𝑝, 𝑞) is causal if there exists {𝑋𝑡}𝑡∈Z satisfying 𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑊𝑡 and

𝑋𝑡 =
∞

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ = 𝜓(𝐵)𝑊𝑡 [Causal Linear Process Solution]

where 𝜓(𝐵) = ∑∞
ℓ=0 𝜓ℓ𝐵ℓ and ∑∞

ℓ=0|𝜓ℓ| < ∞ with 𝜓0 = 1.
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DEFINITION 3.3.4: Invertible ARMA

An ARMA(𝑝, 𝑞) is invertible if there exists {𝑋𝑡}𝑡∈Z satisfying 𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑊𝑡 and

𝑊𝑡 =
∞

∑
ℓ=0

𝜋ℓ𝑋𝑡−ℓ = 𝜋(𝐵)𝑋𝑡

where 𝜋(𝐵) = ∑∞
ℓ=0 𝜋ℓ𝐵ℓ and ∑∞

ℓ=0|𝜋ℓ| < ∞ with 𝜋0 = 1.

REMARK 3.3.5

Causality + Invertibility ⟹ Information in {𝑋𝑡}𝑡≤𝑇 is the same as Information in {𝑊𝑡}𝑡≤𝑇 where
{𝑋𝑡}𝑡≤𝑇 is an observed time series.

THEOREM 3.3.6: Causality

By the fundamental theorem of algebra, the autoregressive polynomial 𝜙(𝑧) has 𝑝 roots, say 𝑧1, … , 𝑧𝑝 ∈ C. If
𝜌 = min

1≤𝑗≤𝑝
|𝑧𝑗| > 1, then there exists a stationary and causal 𝑋𝑡 to the ARMA equations: 𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑊𝑡.

𝑋𝑡 =
∞

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ

The coefficients {𝜓ℓ}∞
ℓ=0 satisfy

∞
∑
ℓ=0

|𝜓ℓ| < ∞

in fact,
|𝜓ℓ| ≤ 1

𝜌ℓ

which is the geometric decay. Also,

𝜓(𝑧) =
∞

∑
ℓ=0

𝜓ℓ𝑧ℓ = 𝜃(𝑧)
𝜙(𝑧)

(|𝑧| ≤ 1)

In essence,

𝑋𝑡 = 𝜃(𝐵)
𝜙(𝐵)

𝑊𝑡 =
∞

∑
𝑗=0

𝜓𝑗𝐵𝑗𝑊𝑡

Key:
1

𝜙(𝑧)
=

∞
∑
𝑗=0

𝜙𝑗𝑧𝑗 where |𝑧| ≤ 1 so
1
𝜙
has a convergent power series representation for |𝑧| ≤ 1.

THEOREM 3.3.7: Invertibility

If 𝑧1, … , 𝑧𝑞 are the zeros of 𝜃(𝑧) and min
1≤𝑖≤𝑞

|𝑧𝑖| > 1, then 𝑋𝑡 is invertible,

𝑊𝑡 =
∞

∑
ℓ=0

𝜋ℓ𝑋𝑡−ℓ

Coefficients {𝜋ℓ}∞
ℓ=0 satisfy

𝜋(𝑧) =
∞

∑
ℓ=0

𝜋ℓ𝑧ℓ = 𝜙(𝑧)
𝜃(𝑧)

(|𝑧| ≤ 1)
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Moral: When we look for coefficients 𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞, we want to do so in such a way that

𝜙(𝑧), 𝜃(𝑧) ≠ 0 (|𝑧| ≤ 1)

3.4 ARMA Process Examples and ACF

EXAMPLE 3.4.1

Consider the ARMA(2, 2) model

𝑋𝑡 = 1
4

𝑋𝑡−1 + 1
8

𝑋𝑡−2 + 𝑊𝑡 − 5
6

𝑊𝑡−1 + 1
6

𝑊𝑡−2

Questions:
• Is there a stationary and causal solution to 𝑋𝑡?
• Is it invertible?
• Is there parameter redundancy?

AR polynomial:
𝜙(𝑧) = 1 − 1

4
𝑧 − 1

8
𝑧2

MA polynomial:
𝜃(𝑧) = 1 − 5

6
𝑧 + 1

6
𝑧2

Roots for 𝜙:
2 ± √4 + 4(8)

−2
= −1 ± 3 = −4, 2

Roots for 𝜃: 2, 3
⟹ 𝜙(𝑧) = −1

8
(𝑧 + 4)(𝑧 − 2), 𝜃(𝑧) = 1

6
(𝑧 − 2)(𝑧 − 3)

Note that 𝜙(𝑧) and 𝜃(𝑧) share common (𝑧 − 2) which indicates that the parameters are redundant.
Therefore, 𝑋𝑡 satisfies an ARMA(1, 1) with

𝜙(𝑧) = −1
8

(𝑧 + 4), 𝜃(𝑧) = 1
6

(𝑧 − 3)

Since the roots of 𝜙 and 𝜃 are outside the unit circle in C, 𝑋𝑡 is stationary, causal, and invertible.

EXAMPLE 3.4.2

Suppose
𝑋𝑡 = −1

4
𝑋𝑡−1 + 𝑊𝑡 − 1

3
𝑊𝑡−1

where 𝑋𝑡 ∼ ARMA(1, 1).
𝜙(𝑧) = 1 + 1

4
𝑧 ⟹ Root is −4.

So 𝑋𝑡 is stationary and causal, and can be represented as a linear process:

𝑋𝑡 =
∞

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ

We need to calculate the coefficients 𝜓ℓ.
We know

𝜓(𝑧) =
∞

∑
ℓ=0

𝜓ℓ𝑧ℓ = 𝜃(𝑧)
𝜙(𝑧)

(|𝑧| ≤ 1)
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⟹ 𝜓(𝑧)𝜙(𝑧) = 𝜃(𝑧)

Note that both 𝜓(𝑧)𝜙(𝑧) and 𝜃(𝑧) are power series, therefore we can calculate 𝜓ℓ by matching coefficients.

• 𝜙(𝑧) = 1 + 1
4

𝑧

• 𝜃(𝑧) = 1 − 1
3

𝑧
• 𝜓(𝑧)𝜙(𝑧) = 𝜃(𝑧)

Let’s compute it.

𝑧0 ∶ 𝜓0 = 1

𝑧1 ∶ 𝜓0
4

+ 𝜓1 = −1
3

⟹ 𝜓1 = − 7
12

𝑧2 ∶ 𝜓1
4

+ 𝜓2 = 0 ⟹ 𝜓2 = 7
12

(1
4

)

⋮

𝑧ℓ ∶ 𝜓ℓ−1
4

+ 𝜓ℓ = 0 ⟹ 𝜓ℓ = (−1)ℓ 7
12

(1
4

)
ℓ−1

(ℓ ≥ 1)

Simplifying,

𝜓𝑗 =
⎧{
⎨{⎩

1 𝑗 = 0

7
3

(−1
4

)
𝑗

𝑗 ≥ 1

We can automate 𝜓𝑗 in R with ARMAtoMA().
library(astsa)
ARMAtoMA(ar=-1/4, ma=-1/3, 10)

If 𝑋𝑡 is a stationary and causal solution to the ARMA(𝑝, 𝑞) model.

𝑋𝑡 =
∞

∑
𝑗=0

𝜓𝑗𝑊𝑡−𝑗

𝛾𝑋(ℎ) = E[𝑋𝑡𝑋𝑡+ℎ] = E[(
∞

∑
𝑗=0

𝜓𝑗𝑊𝑡−𝑗)(
∞

∑
𝑘=0

𝜓𝑘𝑊𝑡+ℎ−𝑘)]

Note that
𝑡 − 𝑗 = 𝑡 + ℎ − 𝑘, ⟹ 𝑘 = ℎ + 𝑗, 𝑗 = 0, 1, 2, … E[𝑋2

𝑡−𝑗] = 𝜎2
𝑊

Therefore,

𝛾𝑋(ℎ) = 𝜎2
𝑊

∞
∑
𝑗=0

𝜓𝑗𝜓𝑗+ℎ

We can automate 𝛾𝑋(ℎ) in R with ARMAacf().
For ℎ ≥ 1, we have

𝛾𝑋(ℎ) =
∞

∑
𝑗=0

𝜓𝑗𝜓𝑗+ℎ

= 𝜓0𝜓ℎ +
∞

∑
𝑗=1

𝜓𝑗𝜓𝑗+1

= 7
3

(−1
4

)
ℎ

+
∞

∑
𝑗=1

[7
3

(−1
4

)
𝑗 7
3

(−1
4

)
𝑗+1

]

= 91
135

(−1)ℎ41−ℎ
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Then,

𝛾𝑋(0) =
∞

∑
𝑗=0

𝜓2
𝑗

= (1)2 +
∞

∑
𝑗=1

𝜓2
𝑗

= 1 +
∞

∑
𝑗=1

7
3

(−1
4

)
𝑗

= 184
135

Therefore, the ACF for ℎ ≥ 1 is given by

𝜌𝑋(ℎ) =
⎧{
⎨{⎩

1 ℎ = 0
𝛾𝑋(ℎ)
𝛾𝑋(0)

=
91

135 (−1)ℎ41−ℎ

184
135

= 91
23

(−1)ℎ2−2ℎ−1 ℎ ≥ 1

Let’s verify this in R.
round(ARMAacf(ar = -1 / 4, ma = -1 / 3, 5), 6)
h <- seq(1, 10, by = 1)
round((91 / 23) * (-1) ^ h * 2 ^ (-2 * h - 1), 6)
Output:

0 1 2 3 4 5
1.000000 -0.494565 0.123641 -0.030910 0.007728 -0.001932

-0.494565 0.123641 -0.030910 0.007728 -0.001932
As we can see, this is correct.



Chapter 4

Week 4

4.1 Stationary Process Forecasting
Suppose we observe a time series 𝑋1, … , 𝑋𝑇 that we believe has been generated by an underlying stationary
process. We would like to produce an ℎ-step ahead forecast

𝑋̂𝑇 +ℎ = 𝑋̂𝑇 +ℎ∣𝑇 = 𝑓(𝑋𝑡, … , 𝑋1)

forecasting 𝑋𝑇 +ℎ. Ideally, 𝑋̂𝑇 +ℎ would minimize the prediction error

𝐿(𝑋𝑇 +ℎ, 𝑋̂𝑇 +ℎ) = min
𝑓

𝐿(𝑋𝑇 +ℎ, 𝑓(𝑋𝑇, … , 𝑋1))

where 𝐿 is a loss function.

Frequently, the loss function is taken to be the mean-squared error (MSE)

𝐿(𝑋𝑇 +ℎ, 𝑋̂𝑇 +ℎ) = E[(𝑋𝑇 +ℎ − 𝑋̂𝑇 +ℎ)2]

When using MSE, it is natural to consider

𝐿2 = {Random variables 𝑋 ∶ E[𝑋2] < ∞}

𝐿2 is a Hilbert space when equipped with the inner product

⟨𝑋, 𝑌 ⟩ = E[𝑋𝑌 ]

Hilbert spaces are generalizations of Euclidean space (R𝑑) in which the geometry and notation of projection
are preserved.

Proj(𝑋 → 𝑌 ) = ⟨𝑋, 𝑌 ⟩𝑌

DEFINITION 4.1.1: Closed Linear Subspace

We say ℳ ⊆ 𝐿2 is a closed linear subspace, if
(i) Linearity: 𝑋, 𝑌 ∈ ℳ, 𝛼, 𝛽 ∈ R then 𝛼𝑋 + 𝛽𝑌 ∈ ℳ
(ii) Closed: If 𝑋𝑛 → 𝑋 (in the sense that E[(𝑋𝑛 − 𝑋)2] → 0), and 𝑋𝑛 ∈ ℳ, then 𝑋 ∈ ℳ.

54
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THEOREM 4.1.2: Projection Theoren

If ℳ is a closed linear subspace in 𝐿2 and 𝑥 ∈ 𝐿2, then there exists a unique 𝑋̂ ∈ ℳ such that

E[(𝑋 − 𝑋̂)2] = inf
𝑌 ∈ℳ

E[(𝑋 − 𝑌 )2]

Moreover, 𝑋̂ satisfies the prediction equations/normal equations:

(𝑋 − 𝑋̂) ∈ ℳ⟂ ⟹ E[(𝑋 − 𝑋̂)𝑌] = 0 (∀𝑌 ∈ ℳ)

In MSE forecasting, we want to choose 𝑋̂𝑇 +ℎ satisfying

E[(𝑋𝑇 +ℎ − 𝑋̂𝑇 +ℎ)2] = inf
𝑌 ∈ℳ

E[(𝑋𝑇 +ℎ − 𝑌 )2]

where ℳ is a closed linear subspace based on the available data.

(1) ℳ1 = {𝑧 ∶ 𝑧 = 𝑓(𝑋𝑇, … , 𝑋1), 𝑓 is any Borel Measurable function}. In this case

𝑋̂𝑇 +ℎ = E[𝑋𝑇 +ℎ ∣ 𝑋𝑇, … , 𝑋1]

Unfortunately ℳ1 is enormous and complicated!

(2) ℳ2 = Span(1, 𝑋𝑇, … , 𝑋1) = {𝑌 ∶ 𝑌 = 𝛼0 + ∑𝑇
𝑗=1 𝛼𝑗𝑋𝑗, 𝛼0, … , 𝛼𝑇 ∈ R} which is the linear functions of

𝑋1, … , 𝑋𝑇. 𝑋̂𝑇 +ℎ is called the best linear predictor (BLP).

4.2 Best Linear Prediction
Suppose 𝑋𝑡 is a (weakly) stationary time series. Best linear prediction entails finding 𝑋̂𝑇 +ℎ so that

E[(𝑋𝑇 +ℎ − 𝑋̂𝑇 +ℎ)2] = inf
𝑌 ∈ℳ2

E[(𝑋𝑇 +ℎ − 𝑌 )2]

𝑋̂𝑇 +ℎ is the best prediction among all linear functions of 𝑋𝑇, … , 𝑋1.

DEFINITION 4.2.1: Projection

If 𝑋̂ satisfies
E[(𝑋 − 𝑋̂)2] = inf

𝑌 ∈ℳ
E[(𝑋 − 𝑌 )2]

we say that 𝑋̂ is the projection of 𝑋 onto ℳ, and we write 𝑋̂ = Proj(𝑋 | ℳ).

In particular, the BLP is
𝑋̂𝑇 +ℎ = Proj(𝑋𝑇 +ℎ | ℳ2)

Consider the case when ℎ = 1. From the Projection Theorem, the BLP is of the form

𝑋̂𝑇 +1 = 𝜙𝑇 ,0 +
𝑇

∑
𝑗=1

𝜙𝑇 ,𝑗𝑋𝑗 ≈ 𝜙𝑇 ,0 +
𝑇

∑
𝑗=0

𝜙𝑇 ,𝑗(𝑋𝑗 − 𝜇)

where 𝜇 = E[𝑋𝑡]. 𝑋̂𝑇 +1 must satisfy the prediction equations,

E[(𝑋𝑇 +1 − 𝑋̂𝑇 +1)𝑌] = 0 (∀𝑌 ∈ ℳ2)

In particular,
E[(𝑋𝑇 +1 − 𝑋̂𝑇 +1)1] = 0 (𝑌 = 1)
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E[(𝑋𝑇 +1 − 𝑋̂𝑇 +1)𝑋𝑗] = 0 (1 ≤ 𝑗 ≤ 𝑇 , 𝑌 = 𝑋𝑗)
We have 𝑇 + 1 equations. Since E[𝑋𝑗 − 𝜇] = 0,

0 = E[𝑋𝑇 +1 − 𝑋̂𝑇 +1] = 𝜇 − 𝜙𝑇 ,0 + 0 ⟹ 𝜙𝑇 ,0 = 𝜇

Before proceeding, note that this implies

E[(𝑋𝑇 +1 − 𝑋̂𝑇 +1)𝑋𝑗] = E[(𝑋𝑇 +1 − 𝜇 − (𝑋̂𝑇 +1 − 𝜇))(𝑋𝑗 − 𝜇)]

So we may assume without loss of generality that 𝜇 = 0, therefore E[𝑋𝑖𝑋𝑗] = 𝛾(𝑗 − 𝑖). Therefore,

0 = E[(𝑋𝑇 +1 − 𝑋̂𝑇 +1)𝑋𝑘] = 𝛾(𝑇 + 1 − 𝑘) −
𝑇

∑
𝑗=1

𝜙𝑇 ,𝑗𝛾(𝑗 − 𝑘) (1 ≤ 𝑘 ≤ 𝑇 )

Therefore, we have linear system of equations for 𝜙𝑇 ,1, … , 𝜙𝑇 ,𝑇:
𝑇

∑
𝑗=1

𝜙𝑇 ,𝑗𝛾(𝑗 − 𝑘) = 𝛾(𝑇 + 1 − 𝑘)

Let

𝜸𝑇 = ⎛⎜
⎝

𝛾(𝑇 )
⋮

𝛾(1)
⎞⎟
⎠

∈ R𝑇

𝛤𝑇 = [𝛾(𝑗 − 𝑘), 1 ≤ 𝑗, 𝑘 ≤ 𝑇] ∈ R𝑇 ×𝑇

𝝓𝑇 = (𝜙𝑇 ,1, … , 𝜙𝑇 ,𝑇)⊤ ∈ R𝑇

this linear system may be expressed as

𝛤𝑇𝝓𝑇 = 𝜸𝑇 ⟹ 𝝓𝑇 = 𝛤 −1
𝑇 𝜸𝑇

given that 𝛤𝑇 is invertible.

The BLP is of the form
𝑋̂𝑇 +1 = 𝝓⊤

𝑇 𝑿𝑇 = (𝛤 −1
𝑇 𝜸𝑇)⊤𝑿𝑇

where 𝑿𝑇 = (𝑋𝑇, … , 𝑋1)⊤ ∈ R𝑇.

When is 𝛤𝑇 non-singular?

THEOREM 4.2.2

If 𝛾(0) > 0, and 𝛾(ℎ) → 0 as ℎ → ∞, then 𝛤𝑇 is non-singular.

Takeaway: Most stationary processes (those whose serial dependence decays over time) have non-singular
𝛤𝑇.

Note that
𝑋̂2

𝑇 +1 = 𝜸⊤
𝑇 𝛤 −1

𝑇 𝑿𝑇𝑿⊤
𝑇 𝛤 −1

𝑇 𝜸𝑇

Note that E[𝑿𝑇𝑿⊤
𝑇 ] = 𝛤𝑇. Therefore, E[𝑋̂2

𝑇 +1] = 𝜸⊤
𝑇 𝛤 −1

𝑇 𝜸𝑇. Also, since

E[𝑋𝑇 +1𝑿𝑇] = 𝜸𝑇 ⟹ E[𝑋𝑇 +1𝑋̂𝑇 +1] = 𝜸⊤
𝑇 𝛤 −1

𝑇 𝜸𝑇

It follows that the mean-squared prediction error is

𝑃 𝑇
𝑇 +1 = E[(𝑋𝑇 +1 − 𝑋̂𝑇 +1)2]

= E[𝑋2
𝑇 +1 − 2𝑋𝑇 +1𝑋̂𝑇 +1 + 𝑋̂2

𝑇 +1]
= 𝛾(0) − 2𝜸⊤

𝑇 𝛤 −1
𝑇 𝜸𝑇 + 𝜸⊤

𝑇 𝛤 −1
𝑇 𝜸𝑇

= 𝛾(0) − 𝜸⊤
𝑇 𝛤 −1

𝑇 𝜸𝑇

The mean-squared prediction error has a simple, computable form depending on 𝛾(ℎ) for 1 ≤ ℎ ≤ 𝑇.
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4.3 Partial ACF
If 𝑋𝑡 ∼ ARMA(𝑝, 𝑞), then we might be able to identify 𝑝, 𝑞 by looking at the ACF.

𝑋𝑡 ∼ AR(𝑝) ⟹ ACF has a geometric decay

𝑋𝑡 ∼ MA(𝑞) ⟹ ACF is non-zero at the first 𝑞 lags, then zero beyond

ACF of an ARMA(𝑝, 𝑞) model can be calculated by calculating the linear process coefficients {𝜓}∞
ℓ=0. Automated

in R using ARMAacf().

In Figure 4.1, it looks like geometric decay. However, it is hard to tell the difference between the ARMA(1, 1)
process and the AR(𝑝) process via the ACF. Therefore, we want to define the partial autocorrelation func-
tion.

# Figure 4.1 (Omitted the PACF)
ACF = ARMAacf(ar = c(.8), ma = 1, 24)[-1]
PACF = ARMAacf(ar = c(.8),

ma = 1,
24,
pacf = TRUE)

par(mfrow = c(1, 2))
plot(ACF,

type = "h",
xlab = "lag",
ylim = c(-.8, 1))

abline(h = 0)
plot(PACF,

type = "h",
xlab = "lag",
ylim = c(-.8, 1))

abline(h = 0)

5 10 15 20

−
0.

5
0.

0
0.

5
1.

0

lag

A
C

F

Figure 4.1: ARMA(1, 1): 𝑋𝑡 = 0.9𝑋𝑡−1 + 𝑊𝑡 + 0.5𝑊𝑡−1

DEFINITION 4.3.1: Partial autocorrelation function

The partial autocorrelation function of a stationary process {𝑋𝑡}𝑡∈Z is

𝜙ℎ,ℎ = Corr(𝑋𝑡+ℎ − Proj(𝑋𝑡+ℎ | 𝑋𝑡+ℎ−1, … , 𝑋𝑡+1), 𝑋𝑡 − Proj(𝑋𝑡 | 𝑋𝑡+ℎ−1, … , 𝑋𝑡+1))

Interpretation: Autocorrelation between 𝑋𝑡 and 𝑋𝑡+ℎ after removing the linear dependence on the
intervening variables 𝑋𝑡+ℎ−1, … , 𝑋𝑡+1.
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REMARK 4.3.2

If 𝑋𝑡 ∼ AR(𝑝), then 𝜙ℎ,ℎ = 0 for ℎ ≥ 𝑝 + 1.

Proof of Remark 4.3.2

If 𝑋𝑡 ∼ AR(𝑝), then 𝑋𝑡+ℎ = ∑𝑝
𝑗=1 𝜙𝑗𝑋𝑡+ℎ−𝑗 + 𝑊𝑡+ℎ.

Proj(𝑋𝑡+ℎ | 𝑋𝑡+ℎ−1, … , 𝑋𝑡+1) =
ℎ−1
∑
𝑘=1

𝛽𝑘𝑋𝑡+ℎ−𝑘

and minimizes

E[(𝑋𝑡+ℎ −
ℎ−1
∑
𝑘=1

𝛽𝑘𝑋𝑡+ℎ−𝑘)
2

] = E[(𝑊𝑡+ℎ +
𝑝

∑
𝑗=1

𝜙𝑗𝑋𝑡+ℎ−𝑗 −
ℎ−1
∑
𝑘=1

𝛽𝑘𝑋𝑡+ℎ−𝑘)
2

]

= 𝜎2
𝑊 + E[(

𝑝

∑
𝑗=1

𝜙𝑗𝑋𝑡+ℎ−𝑗 −
ℎ−1
∑
𝑘=1

𝛽𝑘𝑋𝑡+ℎ−𝑘)
2

]

where the second term is minimized by setting 𝛽𝑗 = 𝜙𝑗 for 1 ≤ 𝑗 ≤ 𝑝 and 𝛽𝑗 = 0 for 𝑗 ≥ 𝑝. Note that
𝑊𝑡+ℎ is independent of other terms. Hence,

𝑋𝑡+ℎ − Proj(𝑋𝑡+ℎ | 𝑋𝑡+ℎ−1, … , 𝑋𝑡+1) = 𝑊𝑡+ℎ (ℎ ≥ 𝑝 + 1)

Therefore,
𝜙ℎ,ℎ = Corr(𝑊𝑡+ℎ, 𝑋𝑡 − Proj(𝑋𝑡 | 𝑋𝑡+ℎ−1, … , 𝑋𝑡+1))

which is independent by causality. Therefore, 𝜙ℎ,ℎ = 0.

REMARK 4.3.3

It can be shown that if 𝑋𝑡 ∼ MA(𝑞) (invertible), then

𝜙ℎ,ℎ ≠ 0

|𝜙ℎ,ℎ| = 𝒪(𝑟ℎ) (0 < 𝑟 < 1)

which is geometric decay.
ACF PACF

MA(𝑞) Cuts off after
lag 𝑞

Geometric
decay

AR(𝑝) Geometric
decay

Cuts off after
lag 𝑝

Estimating the PACF
Using the BLP theory,

̂𝜙ℎ,ℎ = ( ̂𝛤 −1
ℎ 𝜸̂ℎ)(ℎ)

where
̂𝛤ℎ = [ ̂𝛾(𝑗 − 𝑘), 1 ≤ 𝑗, 𝑘 ≤ ℎ] ∈ Rℎ×ℎ

𝜸̂ℎ = [ ̂𝛾(1), … , ̂𝛾(ℎ)] ∈ Rℎ
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4.4 ARMA Forecasting
Suppose 𝑋𝑡 follows a stationary and invertible ARMA(𝑝, 𝑞) model so that 𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑊𝑡. Having observed
𝑋𝑇, … , 𝑋1, we wish to predict 𝑋𝑇 +ℎ.

𝑋̂𝑇 +ℎ = Proj(𝑋𝑇 +ℎ | ℳ2) ≈ E[𝑋𝑇 +ℎ | 𝑋𝑇, … , 𝑋1]

by causality and invertibility 𝑋𝑡 ∼ linear function of 𝑊𝑡.

Furthermore,
𝑋̂𝑇 +ℎ ≈ 𝑋̃𝑇 +ℎ = E[𝑋𝑇 +ℎ | 𝑋𝑇, … , 𝑋1, 𝑋0, …]

which is geometric decay of the dependence on past values.

Since 𝑋𝑡 is casual and invertible,

𝑋𝑡 =
∞

∑
ℓ=0

𝜓ℓ𝑊𝑡−ℓ

𝑊𝑡 =
∞

∑
ℓ=0

𝜋ℓ𝑋𝑡−ℓ

where 𝜓0 = 𝜋0 = 1. Note that 𝜓’s and 𝜋’s are computable by solving homogeneous linear difference
equations.

These representations imply,

Information in (𝑋𝑇, 𝑋𝑇 −1, …) = Information in (𝑊𝑇, 𝑊𝑇 −1, …)

So
𝑋̃𝑇 +ℎ = E[𝑋𝑇 +ℎ | 𝑋𝑇, 𝑋𝑇 −1, …] = E[𝑋𝑇 +ℎ | 𝑊𝑇, 𝑊𝑇 −1, …]

𝑋̃𝑇 +ℎ = E[
∞

∑
ℓ=0

𝜓ℓ𝑊𝑇 +ℎ−ℓ ∣ 𝑊𝑇, 𝑊𝑇 −1, …]

= E[
ℎ−1
∑
ℓ=0

𝜓ℓ𝑊𝑇 +ℎ−ℓ ∣ 𝑊𝑇, …] + E[
∞

∑
ℓ=ℎ

𝜓ℓ𝑊𝑇 +ℎ−ℓ ∣ 𝑊𝑇, …]

=
∞

∑
ℓ=ℎ

𝜓ℓ𝑊𝑇 +ℎ−ℓ since 𝜓ℓ𝑊𝑇 +ℎ−ℓ = 0 for 0 ≤ ℓ ≤ ℎ − 1

Also, using invertibility,

0 = E[𝑊𝑇 +ℎ | 𝑋𝑇, 𝑋𝑇 −1, …] = E[
∞

∑
ℓ=0

𝜋ℓ𝑋𝑇 +ℎ−ℓ ∣ 𝑋𝑇, …]

by independence, and furthermore, with 𝜋0 = 1 we have

0 = 𝑋̃𝑇 +ℎ +
ℎ−1
∑
ℓ=1

𝜋ℓ𝑋̃𝑇 +ℎ−ℓ +
∞

∑
ℓ=ℎ

𝜋ℓ𝑋𝑇 +ℎ−ℓ

Therefore,

𝑋̃𝑇 +ℎ = −
ℎ−1
∑
ℓ=1

𝜋ℓ𝑋̃𝑇 +ℎ−ℓ −
∞

∑
ℓ=ℎ

𝜋ℓ𝑋𝑇 +ℎ−ℓ
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Truncated ARMA Prediction

𝑋̂𝑇 +ℎ = −
ℎ−1
∑
𝑗=1

𝜋𝑗𝑋̂𝑇 +ℎ−𝑗 −
𝑇 +ℎ−1

∑
𝑗=ℎ

𝜋𝑗𝑋𝑇 +ℎ−𝑗

Residuals:
𝑊̂𝑡 = 𝜙(𝐵)𝑋̂𝑡 − 𝜃1𝑊̂𝑡−1 − ⋯ − 𝜃𝑞𝑊̂𝑡−𝑞

Mean initialization:

• 𝑊̂𝑡 = 0 for 𝑡 ≤ 0 and 𝑡 ≥ 𝑇.

• 𝑋̂𝑡 = 0 for 𝑡 ≤ 0 and 𝑡 ≥ 𝑇 + 1.

• 𝑋̂𝑡 = 𝑋𝑡 for 1 ≤ 𝑡 ≤ 𝑇.

Estimator for 𝜎2
𝑊:

𝜎̂2
𝑊 = 1

𝑇

𝑇
∑
𝑡=1

𝑊̂ 2
𝑡

Mean Squared Prediction Error: Since 𝑋̂𝑇 +ℎ ≈ ∑∞
𝑗=ℎ 𝜓𝑗𝑊𝑡+ℎ−𝑗,

𝑃 𝑇
𝑇 +ℎ = E[(𝑋𝑇 +ℎ − 𝑋̂𝑇 +ℎ)2] = E[(

ℎ−1
∑
𝑗=0

𝜓𝑗𝑊𝑡−𝑗)
2

] = 𝜎2
𝑊

ℎ−1
∑
𝑗=0

𝜓2
𝑗

Estimated Mean Squared Prediction Error:

̂𝑃 𝑇
𝑇 +ℎ = 𝜎̂2

𝑊

ℎ−1
∑
𝑗=0

𝜓2
𝑗

Construction of Prediction Intervals: Since 𝑋̂𝑇 +ℎ ≈ E[𝑋𝑇 +ℎ | 𝑋𝑇, …],

E[𝑋̂𝑇 +ℎ − 𝑋𝑇 +ℎ] = 0 (Tower Property)

E[(𝑋̂𝑇 +ℎ − 𝑋𝑇 +ℎ)2] = 𝑃 𝑇
𝑇 +ℎ

Hence
𝑋̂𝑇 +ℎ − 𝑋𝑇 +ℎ

√ ̂𝑃 𝑇
𝑇 +ℎ

is an approximately mean zero and unit variance random variable.

Suppose 𝑐𝛼 is the 𝛼-critical value of this random variable, then

𝑋̂𝑇 +ℎ ± 𝑐𝛼/2√ ̂𝑃 𝑇
𝑇 +ℎ

is an approximate (1 − 𝛼) prediction interval for 𝑋𝑇 +ℎ.

Choices for 𝑐𝛼:

(1) 𝑧𝛼 (standard normal critical value).

Motivation: If 𝑊𝑡 is Gaussian, then 𝑋𝑡 = ∑∞
ℓ=0 𝜓ℓ𝑊𝑡−ℓ is Gaussian.

(2) Empirical critical value of residuals (standardized)

𝑊̂𝑡
𝜎𝑊

(1 ≤ 𝑡 ≤ 𝑇 )

(3) 𝑡-distribution, Pareto, or skewed distribution fit to standardized residuals.
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Long Range Behaviour of ARMA Forecasts
Suppose 𝑌𝑡 = 𝑠𝑡 + 𝑋𝑡 where 𝑋𝑡 ∼ ARMA(𝑝, 𝑞).

̂𝑌𝑇 +ℎ = ̂𝑠𝑇 +ℎ + 𝑋̂𝑇 +ℎ = ̂𝑠𝑇 +ℎ +
∞

∑
𝑗=ℎ

𝜓𝑗𝑊𝑇 +ℎ−𝑗
⎵⎵⎵⎵⎵⎵
→0 (geometrically)

̂𝑌𝑇 +ℎ is converging fast to ̂𝑠𝑇 +ℎ. Therefore, when we are doing ARMA forecasting in a trend + noise framework,
we better get the trend correct for long range forecasts. Long range forecasts are only going to depend on
the trend, and very little on the noise because we know that ARMA processes have a geometric decay to their
dependent structure.

𝑃 𝑇
𝑇 +ℎ = 𝜎2

𝑊

ℎ−1
∑
ℓ=0

𝜓2
ℓ

ℎ→∞
−−−→ 𝜎2

𝑊

∞
∑
ℓ=0

𝜓2
ℓ = 𝛾𝑋(0) = 𝜎2

𝑊

In the long run, the MSE is the variance of 𝑋𝑡.

4.5 ARMA Forecasting Example 1: Cardiovascular Mortality
[R Code] Cardiovascular Mortality

Slide 1
Let’s give ARMA forecasting a try on real data.

Slide 2
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Figure 4.2: Weekly cardiovascular mortality, LA County.

Slide 3
Let 𝑋𝑡 = cardiovascular mortality series. Our model is

𝑋𝑡 = 𝑠𝑡 + 𝑌𝑡

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/4.5 - Cardiovascular Mortality Forecasting.R
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where 𝑌𝑡 ∼ ARMA(𝑝, 𝑞).

𝑋𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝛽3𝑡3⎵⎵⎵⎵⎵⎵⎵⎵⎵
polynomial

+ 𝛽4 sin(2𝜋
52

𝑡) + 𝛽5 cos(
2𝜋
52

𝑡) + 𝛽6 sin(2𝜋
26

𝑡) + 𝛽6 cos(
2𝜋
26

𝑡)
⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

seasonal

where the first four terms are the polynomial trends, the next two terms are the yearly cycle, and the last two
are the half-yearly cycle.

Decided on the trend using AIC, which will be discussed next week.

Slide 4
𝑠𝑡 estimated using ordinary least squares.
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Slide 5

Time
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8

Lag

A
C

F

Series  residuals(reg2)

• ̂𝑌𝑡 = 𝑋𝑡 − ̂𝑠𝑡 “seems reasonably stationary.”

• Mild serial correlation in ̂𝑌𝑡 — Might be well modelled by MA(2) or ARMA(1, 1).

Slide 6
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−
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• ̂𝑌𝑡 seems reasonably normal, suggests using

±𝑍𝛼/2√𝑃 𝑇
𝑇 +ℎ

to construct prediction bounds.
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Slide 7
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Considering the PACF: On the first two lags these are large which is indicative of an autoregressive 2 structure,
that is, AR(2) structure.

Slide 8
Model ̂𝑌𝑡 as ARMA(2, 1).

𝑌𝑡 = 0.0885𝑌𝑡−1 + 0.3195𝑌𝑡−2 + 𝑊𝑡 + 0.1328𝑊𝑡−1

parameters estimated by MLE.



CHAPTER 4. WEEK 4 65

Slide 9
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Slide 10

10−step Prediction of residuals
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̂𝑌𝑇 +ℎ∣𝑇, ℎ = 1, … , 10.
̂𝑌𝑇 +ℎ∣𝑇 ± 1.96√ ̂𝑃 𝑇

𝑇 +ℎ

where 1.96 is the 97.5% critical value of 𝒩(0, 1).

Slide 11

0 5 10 15 20 25 30

70
80

90
10

0
11

0

Index

Figure 4.3: 30 weeks of data with predicted trend

Slide 12
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Figure 4.4: Forecasts with 95% prediction intervals

Fluctuations attribute to serial dependence. Red lines show that forecasts quickly converge to trend.
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4.6 ARMA Forecasting Example 2: Johnson and Johnson
[R Code] Johnson and Johnson

𝑋𝑡 Johnson and Johnson Earnings.
𝑋𝑡 = 𝑒𝑠𝑡+𝑌𝑡

where 𝑌𝑡 is stationary. In this case,
log(𝑋𝑡) = 𝑠𝑡 + 𝑌𝑡

where 𝑌𝑡 ∼ ARMA(𝑝, 𝑞).

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/4.6 - Johnson and Johnson Forecasting.R
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Week 5

5.1 ARMA Parameter Estimation: AR Case
Suppose we observe a time series 𝑋1, … , 𝑋𝑇 ∼ ARMA(𝑝, 𝑞)

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑋𝑡

𝜙(𝑧) = 1 − 𝜙1𝑧 − ⋯ − 𝜙𝑝𝑧𝑝

𝜃(𝑧) = 1 + 𝜃1𝑧 + ⋯ + 𝜃𝑞𝑧𝑞

Our goal is to estimate

• 𝜙1, … , 𝜙𝑝 (AR parameters)

• 𝜃1, … , 𝜃𝑞 (MA parameters)

• 𝜎2
𝑊 (white noise variance)

AR(1) case: 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡 with E[𝑊 2
𝑡 ] = 𝜎2

𝑊. The idea is to use OLS.

̂𝜙 = argmin
|𝜙|<1

𝑇
∑
𝑡=2

(𝑋𝑡 − 𝜙𝑋𝑡−1)2

This leads to (upon some calculations):

̂𝜙 =
1
𝑇 ∑𝑇

𝑡=2 𝑋𝑡𝑋𝑡−1
1
𝑇 ∑𝑇

𝑡=2 𝑋2
𝑡

≈ ̂𝛾(1)
̂𝛾(0)

= ̂𝜌(1)
𝑃

−−−→
𝑇 →∞

𝜙

𝜎̂2
𝑊 = 1

𝑇 − 1

𝑇
∑
𝑡=2

(𝑋𝑡 − ̂𝜙𝑋𝑡−1)2

where 𝑋𝑡 − ̂𝜙𝑋𝑡−1 is estimated 𝑊𝑡 and 𝜎̂2
𝑊 is the sample variance of residuals.

AR(𝑝) case: 𝑋𝑡 = 𝜙1𝑋𝑡−1 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝑊𝑡. OLS: 𝝓 = (𝜙1, … , 𝜙𝑝)⊤ ∈ R𝑝

̂𝝓 = argmin
𝝓̂

𝑇
∑

𝑡=𝑝+1
(𝑋𝑡 − 𝜙1𝑋𝑡−1 − ⋯ − 𝜙𝑝𝑋𝑡−𝑝)2

̂𝝓 admits a stationary and causal solution.

Solve using calculus (take first order partial derivatives set equal to zero), leads to a system of 𝑝 linear equations
of the form

̂𝛤𝑝
̂𝝓 = ̂𝜸𝑝

68
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where
̂𝛤𝑝 = ( ̂𝛾(𝑗 − 𝑘), 1 ≤ 𝑗, 𝑘 ≤ 𝑝) ∈ R𝑝×𝑝

𝜸̂𝑝 = ( ̂𝛾(1). … , ̂𝛾(𝑝))⊤

The resulting OLS estimator takes the form
̂𝝓 = ̂𝛤 −1

𝑝 𝜸̂𝑝

𝜎̂2
𝑊 = ̂𝛾(0) − 𝜸̂⊤

𝑝 ̂𝛤𝑝𝜸̂𝑝

Similar approach: use method of moments (set parameters so that empirical moments match theoretical causal
moments induced by the model).

If 𝑋𝑡 ∼ AR(𝑝), then for 1 ≤ ℎ ≤ 𝑝.

𝛾(ℎ) = E[𝑋𝑡𝑋𝑡+ℎ]
= E[𝑋𝑡(𝜙1𝑋𝑡+ℎ−1 + ⋯ + 𝜙𝑝𝑋𝑡+ℎ−𝑝 + 𝑊𝑡+ℎ)]
= 𝜙1𝛾(ℎ − 1) + 𝜙2𝛾(ℎ − 2) + ⋯ + 𝜙𝑝𝛾(ℎ − 𝑝) + 0

where the 0 occurs since 𝑋𝑡 ⟂⟂ 𝑊𝑡+ℎ.

This implies the linear system:
𝜸𝑝 = 𝛤𝑝𝝓

𝜸𝑝 = (𝛾(1), … , 𝛾(𝑝))⊤ ∈ R𝑝

𝛤𝑝 = [𝛾(𝑗 − 𝑘), 1 ≤ 𝑗, 𝑘 ≤ 𝑝] ∈ R𝑝×𝑝

Note that 𝑋𝑡 = ∑∞
ℓ=0 𝜓ℓ𝑊𝑡−ℓ where 𝜓0 = 1 and 𝑊𝑡 = 𝑋𝑡 − 𝜙1𝑋𝑡−1 − ⋯ − 𝜙𝑝𝑋𝑡−𝑝 imply

𝜎2
𝑊 = E[𝑋𝑡𝑊𝑡] = E[𝑋𝑡(𝑋𝑡 − 𝜙1𝑋𝑡−1 − ⋯ − 𝜙𝑝𝑋𝑡−𝑝)] = 𝛾(0) − 𝜙1𝛾(1) − ⋯ − 𝜙𝑝𝛾(𝑝)

which are Yule-Walker Equations.
𝜸𝑝 = 𝛤𝑝𝝓

Yule-Walker Estimators:
̂𝝓 = ̂𝛤 −1

𝑝 𝜸̂𝑝

𝜎̂2
𝑊 = ̂𝛾(0) − 𝜸̂⊤

𝑝 ̂𝛤 −1
𝑝 𝜸̂𝑝

EXAMPLE 5.1.1

In the AR(1) case, the YW estimators are

̂𝜙 = ̂𝛾(1)
̂𝛾(0)

= ̂𝜌(1)

𝜎̂2
𝑊 = ̂𝛾(0) − ̂𝛾2(1)

̂𝛾(0)

THEOREM 5.1.2

If 𝑋𝑡 ∼ AR(𝑝) (causal), then
̂𝜙OLS, 𝑖
̂𝜙YW, 𝑖

𝑃
−−−→
𝑇 →∞

1

OLS and YW estimates are asymptotically equivalent.
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THEOREM 5.1.3
√

𝑇( ̂𝝓YW − 𝝓)
𝐷

−−−→
𝑇 →∞

MVN(0, 𝜎2
𝑊𝛤 −1

𝑝 )

𝜎̂2
𝑊

𝑃
−→ 𝜎2

𝑊

• Optimal variance among all possible (asymptotically) unbiased estimators, hence efficient.
• Result can be used to obtain confidence intervals for 𝜙.

5.2 ARMA Parameter Estimation: MLE
Ordinary Least Squares and Yule-Walker equation estimators are effective in estimating the AR(𝑝) parameters,
but are difficult to apply to fitting MA(𝑞) and general ARMA(𝑝, 𝑞) models since the white noises 𝑊𝑡 are not
observable, and YW equations are not linear in the MA parameters.

Latent Variables (variables associated with 𝑊𝑡) ⟹ MLE is best.

Suppose 𝑋𝑡 ∼ AR(1) (causal)
𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡

where 𝑊𝑡
iid∼ 𝒩(0, 𝜎2

𝑊), then

𝑋𝑡 =
∞

∑
ℓ=0

𝜙ℓ𝑊𝑡−ℓ

is Gaussian. 𝐿2 limits of Gaussian random variables are Gaussian. (MGF or characteristic function).

Moreover, 𝑋1, … , 𝑋𝑇 are jointly Gaussian since

𝑎1𝑋1 + ⋯ + 𝑎𝑇𝑋𝑇 =
∞

∑
ℓ=0

𝜙ℓ(𝑎1𝑊1−ℓ + ⋯ + 𝑎𝑇𝑊𝑡−ℓ⎵⎵⎵⎵⎵⎵⎵⎵⎵
Gaussian

)

MLE:
ℒ(𝜙, 𝜎2

𝑊) = 𝑓(𝑋𝑇, 𝑋𝑇 −1, … , 𝑋1; 𝜙, 𝜎2
𝑊)

where

• ℒ(𝜙, 𝜎2
𝑊) is the likelihood of 𝜙 and 𝜎2

𝑊.

• 𝑓(𝑋𝑇, 𝑋𝑇 −1, … , 𝑋1; 𝜙, 𝜎2
𝑊) is the joint density of 𝑋𝑇, … , 𝑋1 at the observed data. Gaussian Density.

Key idea in Time series: To evaluate the likelihood condition on the path/past!

𝑓(𝑋𝑇, … , 𝑋1) = 𝑓(𝑋𝑇 ∣ 𝑋𝑇 −1, … , 𝑋1)𝑓(𝑋𝑇 −1, … , 𝑋1)
⋮ iterate

= 𝑓(𝑋𝑇 ∣ 𝑋𝑇 −1, … , 𝑋1)𝑓(𝑋𝑇 −1 ∣ 𝑋𝑇 −2, … , 𝑋1) ⋯ 𝑓(𝑋2 ∣ 𝑋1)𝑓(𝑋1)

=
𝑇

∏
𝑖=1

𝑓(𝑋𝑖 ∣ 𝑋𝑖−1, … , 𝑋1)

According to HW2:
𝑋𝑖 ∣ (𝑋𝑖−1, … , 𝑋1) ∼ 𝒩(𝜙𝑋𝑖−1, 𝜎2

𝑊)

Note that 𝑋𝑖 ∣ (𝑋𝑖−1, … , 𝑋1) = 𝑋𝑖 ∣ 𝑋𝑖−1, AR(1).
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Thus,

ℒ(𝜙, 𝜎2
𝑊) =

𝑇
∏
𝑖=2

1

√2𝜋𝜎2
𝑊

exp{−(𝑋𝑖 − 𝜙𝑋𝑖−1)2

2𝜎2
𝑊

}𝑓(𝑋1)

= (2𝜋𝜎2
𝑊)− 𝑇−1

2 exp{−
∑𝑇

𝑖=2(𝑋𝑖 − 𝜙𝑋𝑖−1)2

2𝜎2
𝑊

}𝑓(𝑋1; 𝜙, 𝜎2
𝑊)

Maximizing ℒ(𝜙, 𝜎2
𝑊) in this case leads to a similar estimator as OLS/YW.

General ARMA(𝑝, 𝑞) case: Again, 𝑋𝑇, … , 𝑋1 are jointly Gaussian if 𝑊𝑡 ∼ Gaussian.

𝐿(𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞, 𝜎2
𝑊⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

𝜽∈R𝑝+𝑞+1

) =
𝑇

∏
𝑖=1

𝑓(𝑋𝑖 ∣ 𝑋𝑖−1, … , 𝑋1)⎵⎵⎵⎵⎵⎵⎵⎵
Gaussian

𝑋𝑖 ∣ (𝑋𝑖−1, … , 𝑋1) ∼ 𝒩(E[𝑋𝑖 | 𝑋𝑖−1, … , 𝑋1],MSE)

∼ 𝒩(𝑋̃𝑖∣(𝑖−1)(𝜽), 𝑃 𝑖
𝑖−1(𝜽))

where 𝑃 𝑖
𝑖−1(𝜽) is forecast MSE predicting 𝑋𝑖 from 𝑋𝑖−1, … , 𝑋1.

This likelihood can be maximized using numerical optimization. (Newton-Raphson Algorithm, Conjugate
Gradient).

THEOREM 5.2.1: Chapter 8 of Brockwell and Davis, Hannan (1980)

The MLE’s of 𝜙1, … , 𝜙𝑝, 𝜃1, … , 𝜃𝑞, 𝜎2
𝑊 are

√
𝑇 consistent and asymptotically Normal with asymptotic covari-

ance equal to the inverse of the information matrix. In this sense, they are asymptotically optimal.

REMARK 5.2.2: Takeaway Message

(1) MLE estimation reduces to OLS, YW equation estimation for AR(𝑝) models.
(2) For general ARMA(𝑝, 𝑞) estimation, MLE is through to be optimal in most situations. (Used as a

default/benchmark).

5.3 Model Selection Diagnostic Tests
Using MLE, we can fit an ARMA(𝑝, 𝑞) model to an observed series 𝑋1, … , 𝑋𝑇.

Question: How do we select the orders 𝑝 and 𝑞 of the model?

Usual Methods
(1) Examine ACF and PACF.

(2) Model Diagnostics/Goodness-of-Fit tests: Examine the residuals of the ARMA(𝑝, 𝑞) model to check for
the plausibility of the white noise assumption.

(3) Model Selection Methods: Information criteria, cross-validation.

Model Diagnostics
If the ARMA(𝑝, 𝑞) model fits the data well, then the estimated residuals should behave like white noise.

𝑊̂𝑡 =
𝑋𝑡 − 𝑋̃𝑡∣(𝑡−1)

√ ̂𝑃 𝑡−1
𝑡
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where

• 𝑋̃𝑡∣(𝑡−1) is the truncated predicator of 𝑋𝑡 based on 𝑋𝑡−1, … , 𝑋1, and

• ̂𝑃 𝑡+1
𝑡 is the estimated MSE.

This can be investigated by considering ̂𝜌𝑊(ℎ) which is the empirical ACF of 𝑊̂1, … , 𝑊̂𝑇.

As a measure of how “white” the residuals are, it is common to evaluate the cumulative significance of ̂𝜌𝑊(ℎ)
for 1 ≤ ℎ ≤ 𝐻 by applying a “white noise test.” Suppose 𝑊1, … , 𝑊𝑇 is a strong white noise, and ̂𝜌𝑊(ℎ) is the
empirical ACF of this series.

We know that for each fixed ℎ, √
𝑇 ̂𝜌𝑊(ℎ)

𝐷
−→ 𝒩(0, 1)

Also, for 𝑗 ≠ ℎ,

Cov(
√

𝑇 ̂𝛾𝑊(ℎ),
√

𝑇 ̂𝛾𝑊(𝑗)) = 𝑇E[
𝑇

∑
𝑡=1

𝑊𝑡𝑊𝑡+ℎ]E[
𝑇

∑
𝑠=1

𝑊𝑠𝑊𝑠+𝑗]

= 𝑇
𝑇

∑
𝑡=1

𝑇
∑
𝑠=1

E[𝑊𝑡𝑊𝑡+ℎ𝑊𝑠𝑊𝑠+𝑗]

= 0

Using Martingale, or 𝑚-dependent CLT’s, it can be shown that

⎛⎜
⎝

√
𝑇 ̂𝜌𝑊(1)

⋮√
𝑇 ̂𝜌𝑊(𝐻)

⎞⎟
⎠

𝐷
−→ MVN(0, 𝐼𝐻×𝐻)

Therefore,

𝑇
𝐻

∑
ℎ=1

̂𝜌2
𝑊(ℎ)

𝐷
−→ 𝜒2(𝐻)

Box-Ljung-Pierce Test [White Noise Test for ARMA(𝑝, 𝑞) Models]

If 𝑋𝑡 ∼ ARMA(𝑝, 𝑞), and 𝑊̂𝑡 are the model residuals with empirical ACF ̂𝜌𝑊(ℎ), then if

𝑄(𝑇 , 𝐻) = 𝑇 (𝑇 + 2)
𝐻

∑
ℎ=1

̂𝜌2
𝑊(ℎ)

𝑇 − ℎ
≈ 𝑇

𝐻
∑
ℎ=1

̂𝜌2
𝑊(ℎ)

𝑄(𝑇 , 𝐻)
𝐷

−−−→
𝑇 →∞

𝜒2(𝐻 − (𝑝 + 𝑞))

That is, we lose 𝑝 + 𝑞 degrees of freedom for fitting the model.

The BLP test 𝑝-value is then computed as

𝑃BLP = P(𝜒2(𝐻 − (𝑝 + 𝑞)) > 𝑄(𝑇 , 𝐻))

REMARK 5.3.1

If 𝑋𝑡 ∼ ARMA(𝑝, 𝑞), and 𝑊̂𝑡 are calculated based on ARMA(𝑝′, 𝑞′) model where 𝑝′ < 𝑝 or 𝑝′ < 𝑞 (model
is under specified), then

𝑄(𝑇 , 𝐻)
𝑃

−−−→
𝑇 →∞

∞

Interpretation: If BLP 𝑝-values are small, the model is ill-fitting or under specified.
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5.4 Model Selection Information Criteria
Suppose we are trying to select the orders 𝑝 and 𝑞 of an ARMA(𝑝, 𝑞) model to fit 𝑋1, … , 𝑋𝑇.

𝝓 = AR parameters

𝜽 = MA parameters

𝜎2
𝑊 = white noise variance

ℒ(𝑋1, … , 𝑋𝑇; ̂𝝓, ̂𝜽, 𝜎2
𝑊)

Natural idea: Maximize the likelihood of the data as a function of 𝑝 and 𝑞.

Problem: The likelihood is (monotonically) increasing as a function of 𝑝 and 𝑞. Maximizing would lead to
overfitting.

Solution: Maximize the likelihood subject to a penalty term on the number of parameters (complexity) of the
model. Let the number of parameters in the ARMA(𝑝, 𝑞) model be denoted by 𝑘 = 𝑝 + 𝑞 + 1.

−2 log(ℒ(𝑋1, … , 𝑋𝑇; ̂𝝓, ̂𝜽, 𝜎2
𝑊)) + 𝑃(𝑇 , 𝑘)

where 𝑃(𝑇 , 𝑘) is an increasing function of 𝑘.

Optimal 𝑝 and 𝑞 balance model fit with the penalty for complexity.

Common Penalty Term Choices

• AIC(𝑝, 𝑞) = −2 log(ℒ(𝑋1, … , 𝑋𝑇; ̂𝝓, ̂𝜽, 𝜎2
𝑊)) + 2𝑘 + 𝑇

𝑇
.

– Comes from estimating the Kullback–Leibler distance from the fitted model to the “true” model.

• BIC(𝑝, 𝑞) = −2 log(ℒ(𝑋1, … , 𝑋𝑇; ̂𝝓, ̂𝜽, 𝜎2
𝑊)) + 𝑘 log(𝑇 )

𝑇
.

– Comes from approximating and maximizing the posterior distribution of the model given the data.

Interpretation: Small AIC/BIC mean a better model.

Information criteria are also used in trend fitting. Suppose

𝑋𝑡 = 𝑠𝑡 + 𝑌𝑡 = 𝑓𝑡(𝜷) + 𝑌𝑡

where 𝜷 ∈ R𝑘 and 𝑓𝑡(𝜷) is the trend we fit.

Estimate 𝜷 with ̂𝜷 using ordinary least squares.

SS(Res)𝑇 =
𝑇

∑
𝑡=1

(𝑋𝑡 − 𝑓𝑡( ̂𝜷))2

Information criteria typically calculated assuming 𝑌𝑡 is a Gaussian white noise.

SS(Res)𝑇 + 𝑃(𝑇 , 𝑘)

where for 𝑃(𝑇 , 𝑘) we use AIC or BIC penalty.

REMARK 5.4.1

(1) In trend fitting, the assumption of Gaussian white noise residuals is often in doubt.
(2) AIC/BIC are not perfect! They are but one of many tools useful in model selection.

Strengths:
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(i) Easy to compute.
(ii) Facilitates comparing many models quickly.
Weaknesses:
(i) Likelihood must be specified.
(ii) There is a degree of “arbitrariness” to the choice of penalty.

(3) It can be shown that minimizing the AIC is related to minimizing the 1-step forecast MSE, and so
when the application is forecasting, AIC is more common.

5.5 ARIMA Models
We have seen that many time series appear stationary after differencing.

DEFINITION 5.5.1: Integrated

We say a time series 𝑋𝑡 is integrated to order 𝑑 if ∇𝑑𝑋𝑡 is stationary, but ∇𝑗𝑋𝑡 for 1 ≤ 𝑗 ≤ 𝑑 is not
stationary.

Motivation: If 𝑌𝑡 is stationary, and 𝑋𝑡 = ∑𝑡
𝑗=1 𝑌𝑗, 𝑋𝑡 is integrated to order 1. 𝑍𝑡 = ∑𝑡

𝑗=1 𝑋𝑗 is integrated to
order 2, and so on.

DEFINITION 5.5.2: ARIMA

We say 𝑋𝑡 follows an Autoregressive Integrated Moving Average Process (ARIMA) of orders 𝑝, 𝑑, 𝑞 if

𝜙(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃(𝐵)𝑊𝑡

and write 𝑋𝑡 ∼ ARIMA(𝑝, 𝑑, 𝑞). Note that ∇𝑑𝑋𝑡 follows an ARMA(𝑝, 𝑞) model.

Forecasting ARIMA(𝑝, 𝑑, 𝑞) Processes
(1) 𝑌𝑡 = ∇𝑑𝑋𝑡 follows an ARMA(𝑝, 𝑞) model and so can be forecast using truncated ARMA prediction.

(2) Forecasts ̂𝑌𝑇 +ℎ∣𝑇 can be used to forecast 𝑋𝑇 +ℎ by reversing the differencing.

EXAMPLE 5.5.3

For 𝑑 = 1, 𝑌𝑇 +1 = 𝑋𝑇 +1 − 𝑋𝑇 so 𝑋̂𝑇 +1∣𝑇 = 𝑋𝑇 + ̂𝑌𝑇 +1∣𝑇. This can be iterated to produce longer
Horizon forecasts.

Predicting MSE is approximately of the form

𝑃 𝑇
𝑇 +ℎ ≈ 𝜎2

𝑊

ℎ−1
∑
𝑗=0

𝜓2
𝑗,∗

where 𝜓2
𝑗,∗ is the coefficient of 𝑧𝑗 in the power series expansion (centred at zero) of

𝜃(𝑧)
𝜙(𝑧)(1 − 𝑧)𝑑 (|𝑧| < 1)

Idea:
𝑋𝑡 ≈ 𝜃(𝐵)

𝜙(𝐵)(1 − 𝐵)𝑑 𝑊𝑡



CHAPTER 5. WEEK 5 75

EXAMPLE 5.5.4

Let 𝑋𝑡 ∼ ARIMA(0, 1, 0).

𝑋𝑡 − 𝑋𝑡−1 = (1 − 𝐵)𝑋𝑡 = 𝑊𝑡 ⟹ 𝑋𝑡 = 𝑋𝑡−1 + 𝑊𝑡 ⟹ 𝑋𝑡 =
𝑡

∑
𝑗=1

𝑊𝑗

if we iterate 𝑡-times. If 𝑌𝑡 = ∇𝑋𝑡, then ̂𝑌𝑇 +ℎ∣𝑇 = 0 (forecasting 𝑊𝑡’s). Therefore,

𝑋̂𝑇 +1∣𝑇 = 𝑋𝑡 + ̂𝑌𝑇 +1∣𝑇 = 𝑋𝑇

Similarly, 𝑋̂𝑇 +ℎ∣𝑇 = 𝑋𝑇. The best predictor of random walk is last known location.
Prediction MSE:

𝜃(𝑧)
𝜙(𝑧)(1 − 𝑧)𝑑 = 1

1 − 𝑧
=

∞
∑
𝑗=0

𝑧𝑗 (|𝑧| < 1)

⟹ 𝜓𝑗,∗ = 1 (∀𝑗)

⟹ 𝑃 𝑇
𝑇 +ℎ = 𝜎2

𝑊

ℎ−1
∑
𝑗=0

𝜓2
𝑗,∗ = ℎ𝜎2

𝑊

Note that

E[(𝑋̂𝑇 +ℎ∣𝑇 − 𝑋𝑇 +ℎ)2] = E[(
𝑇 +ℎ

∑
𝑗=𝑇 +1

𝑊𝑗)
2

] = ℎ𝜎2
𝑊

𝑋𝑡

𝑇1
𝑡

± 2𝜎2
𝑊

√
ℎ

𝑋̂𝑇 +ℎ∣𝑇 = 𝑋𝑇

Note: Variance of Random
Walk increases over time!

If we forecast into the future, the forecast will be the last observed value. Also, if we plot prediction
intervals, they would be of the form ±2𝜎2

𝑊MSE where MSE which is on the order of
√

ℎ. In particular,
these are increasing as a function of ℎ. Therefore, the variance of a Random Walk will increase over
time, and hence the prediction intervals will increase over time. This is a normal feature you see when
you do ARIMA forecasts, and this is the basic reason why.

How to decide in practice on degree of differencing 𝑑:

(1) Eye-ball Test.

(2) Formal Stationary Tests [Dickey-Fuller, Kwiatkowski–Phillips–Schmidt–Shin (KPSS)].

(3) Cross-validation.
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5.6 ARIMA Modelling Example
[R Code] ARIMA Modelling Example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/5.6 - ARIMA Modelling Example.R


Chapter 6

Week 6

6.1 SARIMA Models
Frequently, time series exhibit “seasonality.”

Rough Definition of Seasonality
A time series 𝑋𝑡 is said to be “seasonal” if it exhibits regular variation so that for some lag 𝑠, 𝑋𝑡 is “similar” to
𝑋𝑡−𝑠. Some sources of seasonality are weather or scheduled events. These typically lead to yearly, weekly,
monthly, or quarterly cycles.

REMARK 6.1.1

ARIMA models are not ideal for modelling seasonality.

ARIMA Models ⟹ Random Walk with Stationary Errors

Random walks do not seasonality.

DEFINITION 6.1.2: Seasonal ARIMA

𝑋𝑡 is said to follow a Seasonal ARIMA model (SARIMA) of orders 𝑝, 𝑑, 𝑞 and 𝑃 , 𝐷, 𝑄 and seasonal
period 𝑠 if

𝛷𝑃(𝐵𝑠)𝜙𝑝(𝐵)(1 − 𝐵𝑠)𝐷(1 − 𝐵)𝑑𝑌𝑡 = 𝛩𝑄(𝐵𝑠)𝜃𝑞(𝐵)𝑊𝑡

We abbreviate the SARIMA 𝑝, 𝑑, 𝑞, 𝑃 , 𝐷, 𝑄 model with seasonal period 𝑠 as SARIMA(𝑝, 𝑑, 𝑞)×(𝑃 , 𝐷, 𝑄)𝑠.

𝛷𝑃(𝐵) = 1 − 𝛷1𝐵 − ⋯ − 𝛷𝑃𝐵𝑃

𝛷𝑃(𝐵𝑠) = 1 − 𝛷1𝐵𝑠 − ⋯ − 𝛷𝑃𝐵𝑃𝑠

𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝

𝛩𝑄(𝐵) = 1 + 𝛩1𝐵 + ⋯ + 𝛩𝑄𝐵𝑄

𝛩𝑄(𝐵𝑠) = 1 + 𝛩1𝐵𝑠 + ⋯ + 𝛩𝑄𝐵𝑄𝑠

𝜃𝑞(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞

DEFINITION 6.1.3

The seasonal autoregressive and moving average polynomials are defined by

𝛷(𝑧) = 1 − 𝛷1𝑧 − ⋯ 𝛷𝑃𝑧𝑃

77
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𝛩(𝑧) = 1 + 𝛩1𝑧 + ⋯ + 𝛩𝑄𝑧𝑄

EXAMPLE 6.1.4

Let 𝑋𝑡 ∼ SARIMA(1, 1, 1) × (1, 1, 1)13.
𝛷(𝑧) = 1 − 𝛷1𝑧

𝜙(𝑧) = 1 − 𝜙1𝑧

𝛩(𝑧) = 1 + 𝛩1𝑧

𝜃(𝑧) = 1 + 𝜃1𝑧

Therefore,
(1 − 𝛷1𝐵13)(1 − 𝜙1𝐵) (1 − 𝐵13)(1 − 𝐵)𝑋𝑡⎵⎵⎵⎵⎵⎵⎵⎵

𝑌𝑡

= 𝛩(𝐵13)𝜃(𝐵)𝑊𝑡

𝑌𝑡 − 𝛷1𝑌𝑡−13 − 𝜙1𝑌𝑡−1 − 𝜙1𝛷1𝑌𝑡−14 = MA term

𝑌𝑡 = 𝑓(𝑌𝑡−13, 𝑌𝑡−1,MA noise, 𝑌𝑡−14)

where 𝑌𝑡−13 is the seasonal lag.

REMARK 6.1.5

(1) 𝑌𝑡 = (1 − 𝐵𝑠)𝐷(1 − 𝐵)𝑑𝑋𝑡, a SARIMA model is just one big ARMA model for 𝑌𝑡.
(2) Advantage over ARMA and ARIMA models is parsimony. Since seasonal series have the feature

that 𝑋𝑡 is similar to 𝑋𝑡−𝑠, we introduce just a few additional terms to model 𝑋𝑡 as a function of
𝑋𝑡−𝑠.

Fitting SARIMA Models
(1) Usually the seasonal lag 𝑠 is known.

(2) Differencing and seasonal differencing can be decided upon by:

(a) Eye-ball test and/or examining the ACF and PACF.

(b) Stationarity tests.

(c) Cross-validation.

We will discuss (b) and (c).

(3) Choosing the order and estimating the components of 𝛷, 𝜙, 𝛩, 𝜃 can be done in the same was as with
ARMA models.

6.2 SARIMA Cardiovascular Mortality Example
[R Code] SARIMA Cardiovascular Mortality Example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/6.2 - SARIMA Cmort Example.R
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6.3 Time Series Cross-Validation
DEFINITION 6.3.1: Cross-validation

Cross-validation is a data driven model evaluation and selection tool for predictive models that entails
the following.
(1) Splitting the available data into training and testing sets.
(2) Fitting models on the training sets.
(3) Evaluating predictions of the model on the tests sets as an overall evaluation of model quality.

Standard Cross-Validation
Suppose (𝑌𝑖, 𝑋𝑖) for 1 ≤ 𝑖 ≤ 𝑛 satisfy 𝑌𝑖 = 𝑓(𝑋𝑖) + 𝜀𝑖. Let 𝑀 be a model used to estimate 𝑓 using ̂𝑓, with the
goal of minimizing 𝐿(𝑌𝑖, ̂𝑓(𝑋𝑖)).

𝐾-fold Cross-Validation
(1) Split (𝑌𝑖, 𝑋𝑖) for 1 ≤ 𝑖 ≤ 𝑛 randomly into 𝐾-groups 𝐺1, … , 𝐺𝑘.

(2) For each 1 ≤ 𝑖 ≤ 𝐾, use 𝑀 to estimate ̂𝑓 (−𝑗) when the data 𝐺𝑖 is left out.

(3) Evaluate error on 𝐺𝑖 with
CV𝑗 = ∑

(𝑌𝑖,𝑋𝑖)∈𝐺𝑗

𝐿(𝑌𝑖, ̂𝑓−𝑗(𝑋𝑖))

(4) The total cross-validation error of the model is:

CV(𝑀) =
𝑘

∑
𝑗=1

CV𝑗

REMARK 6.3.2

• 𝐾 is often called the number of folds.
• If 𝐾 = 𝑛, the procedure is often called the “leave-one-out” cross-validation.
• 𝐾 = 10 is called “10-fold cross validation.”

Problems with Time Series Cross-Validation
(1) Randomly splitting the data scrambles up any serial dependence relationships.

(2) In time series forecasting, it is often most natural to use the past (recent past) to predict future values.

Time Series Cross-Validation Algorithm
(1) Split the data into training and testing ranges 1 ≤ 𝑡𝑟 ≤ 𝑇 where 𝑡𝑟 ≈ 0.75𝑇 is 75% of the training sample.

The test sample is 𝑋𝑡𝑟+1, … , 𝑋𝑇.

(2) For each 𝑗 in 𝑡𝑟 + 1, … , 𝑇, use model to forecast 𝑋̂𝑗+1∣𝑗 based on 𝑋1, … , 𝑋𝑗. Calculate loss

𝐿(𝑋̂𝑗+1∣𝑗; 𝑋𝑗+1) = 𝐿𝑗

(3) Cross-validation score of model

CV(𝑀) =
𝑇

∑
𝑗=𝑡𝑟+1

𝐿𝑗
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REMARK 6.3.3

(1) If interested in longer horizon forecasting, you can compare

𝑋̂𝑗+1∣𝑗, … , 𝑋̂𝑗+ℎ∣𝑗 to 𝑋𝑗+1, … , 𝑋𝑗+ℎ

in the loss calculation step.
(2) Stationarity is crucial in time series cross validation since the model errors in the present must be

similar to errors in the future.
(3) One normally cannot cross-validate everything as this is computationally infeasible.

6.4 Cross-Validation Example
[R Code] Cross-Validation Example

6.5 Simulated and Bootstrapped Prediction Intervals
Usually forecasts are of the form

𝑋̂𝑇 +1∣𝑇 = 𝑔(𝑋𝑇, 𝑋𝑇 −1, … , 𝑋1, 𝑊𝑇 +1)

where 𝑊𝑇 +1 is a strong white noise innovation.

Often, even models are additive so that

𝑋̂𝑇 +1∣𝑇 = 𝑔(𝑋𝑇, … , 𝑋1) + 𝑊𝑇 +1

Simple and powerful models to produce prediction intervals use simulation!

Simulated Prediction Intervals
(1) Choose a distribution for {𝑊𝑡}. A common choice is 𝑊𝑡 ∼ 𝒩(0, 𝜎̂2

𝑊).

(2) For 𝑏 = 1, … , 𝐵 where 𝐵 is a large number, simulate {𝑊 (𝑏)
𝑇 +1}.

(3) Compute 𝑋̂(𝑏)
𝑇 +1∣𝑇 = 𝑔(𝑋𝑇, … , 𝑋1) + 𝑊 (𝑏)

𝑇 +1 for 𝑏 = 1, … , 𝐵.

(4) Denote the empirical 𝑞th quantile of {𝑋̂(𝑏)
𝑇 +1 ∶ 𝑏 = 1, … , 𝐵} by 𝑄̂𝑇 +1(𝑞). We set the (1 − 𝛼) prediction

interval as
(𝑄̂𝑇 +1(𝛼

2
), 𝑄̂𝑇 +1(1 − 𝛼

2
))

REMARK 6.5.1

For longer horizon forecasts, prediction intervals can be obtained by iteration:

𝑋̂(𝑏)
𝑇 +ℎ∣𝑇 = 𝑔(𝑋̂(𝑏)

𝑇 +ℎ−1∣𝑇, … , 𝑋̂(𝑏)
𝑇 +1∣𝑇, 𝑋𝑇, … , 𝑋1) + 𝑊 (𝑏)

𝑇 +ℎ

The prediction interval is

(𝑄̂𝑇 +ℎ(𝛼
2

), 𝑄̂𝑇 +ℎ(1 − 𝛼
2

))

where 𝑄̂𝑇 +ℎ(𝑞) the empirical 𝑞th quantile of 𝑋̂(𝑏)
𝑇 +ℎ.

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/6.4 - Cross-Validation Example.R
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Distributions to Choose for 𝑊𝑡

(1) 𝑊𝑡 ∼ 𝒩(0, 𝜎̂2
𝑊) where 𝜎̂2

𝑊 is estimated from residuals which leads to approximately the same “well
known” prediction intervals.

(2) A distribution fit to the estimated residuals 𝑊̂𝑡; e.g., a 𝑡-distribution, Pareto, etc.

(3) The empirical distribution of the residuals 𝑊̂𝑡; that is, randomly drawing {𝑊̂1, … , 𝑊̂𝑇} which is com-
monly known as bootstrapping.

Note: An important consideration of the bootstrap is that the residuals should be white! We can check
the whiteness of the residuals using the ACF or a white noise test.

6.6 Bootstrap Prediction Intervals Example
[R Code] Bootstrap Prediction Intervals Example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/6.6 - Bootstrap Prediction Intervals Example.R
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Week 7

7.1 Exponential Smoothing Models Introduction
• ARIMA Models: Model a time series, potentially after differencing towards stationarity, in terms of its

autocorrelation (linear process).

• Exponential Smoothing: Flexibly model the trend and seasonality observed in a time series.

Simple Exponential Smoothing
Suppose we wish to forecast a time series 𝑋1, … , 𝑋𝑇. Two extreme forecasts are

𝑋̂𝑇 +1∣𝑇 = 𝑋𝑇 [Random Walk]

𝑋̂𝑇 +1∣𝑇 = 𝑋̄ = 1
𝑇

𝑇
∑
𝑡=1

𝑋𝑡 [IID Sequence]

Compromise: Exponential Smoothing.

𝑋̂𝑇 +1∣𝑇 = 𝛼𝑋𝑇 + 𝛼(1 − 𝛼)𝑋𝑇 −1 + ⋯ + 𝛼(1 − 𝛼)𝑇 −1𝑋1

where 𝛼 ∈ [0, 1] is the smoothing parameter.

Weights applied to past observations decrease exponentially quickly.

Simple exponential smoothing can be stated as a recursive system of equations.

• Prediction Equation: 𝑋̂𝑇 +1 = ℓ𝑇.

• Smoothing/Level Equation: ℓ𝑇 = 𝛼𝑋𝑇 + (1 − 𝛼)ℓ𝑇 −1 = ℓ𝑇(𝛼, ℓ𝜎) which is a convex combination of last
observed value and last prediction or “level.”

• Initial Condition: ℓ0.

• Parameters Defining Model are 𝛼 ∈ [0, 1] and ℓ0.

Estimation may be conducted using MLE (later) or OLS. For OLS,

( ̂𝛼, ̂ℓ0) = argmin
0≤𝛼≤1, ℓ0∈R

𝑇
∑
𝑖=2

[𝑋𝑖 − ℓ𝑖(𝛼, ℓ0)]2

𝑋̂𝑇 +1 = ̂𝛼𝑋𝑇 + (1 − ̂𝛼)ℓ𝑇( ̂𝛼. ̂ℓ0)

which can be calculated by iterating the level equation back to ℓ0.

82



CHAPTER 7. WEEK 7 83

Linear Trend Exponential Smoothing

• Prediction Equation: 𝑋̂𝑇 +ℎ = ℓ𝑇 + ℎ𝑏𝑇 where ℓ𝑇 is the level and 𝑏𝑇 is the slope.

• Level Equation: ℓ𝑇 = 𝛼𝑋𝑇 + (1 − 𝛼)(ℓ𝑇 −1 + 𝑏𝑇 −1) which is the convex combination of last observation
and last “level” or prediction.

• Trend/Slope Equation: 𝑏𝑇 = 𝛽(ℓ𝑇 − ℓ𝑇 −1) + (1 − 𝛽)𝑏𝑇 −1 where ℓ𝑇 − ℓ𝑇 −1 is the last “observed” slope or
change in level.

• Initial Conditions: ℓ0 and 𝑏0.

• Parameters: 𝛼, 𝛽 ∈ [0, 1], ℓ0, 𝛽0 ∈ R which are estimated using MLE/OLS.

Trend + Seasonal Exponential Smoothing (Holt Winters ES, 1960s)
Suppose ℎ is the forecast horizon of interest and time series has seasonal period 𝑝. Set 𝑘 = ⌊(ℎ − 1)/𝑝⌋.

• Prediction Equation: 𝑋̂𝑇 +1 = ℓ𝑇 +ℎ𝑏𝑇 +𝑠𝑇 +ℎ−𝑝(𝑘+1) where ℓ𝑇 is the level, 𝑏𝑇 is the slope, and 𝑠𝑇 +1−𝑝(𝑘+1)
is the seasonal effect.

• Level Equation: ℓ𝑇 = 𝛼(𝑋𝑇 − 𝑠𝑇 −𝑝) + (1 − 𝛼)(ℓ𝑇 −1 + 𝑏𝑇 −1).

• Slope Equation: 𝑏𝑇 = 𝛽(ℓ𝑇 − ℓ𝑇 −1) + (1 − 𝛽)𝑏𝑇 −1.

• Seasonal Equation: 𝑠𝑇 = 𝛾(𝑋𝑇 − ℓ𝑇 −1 − 𝑏𝑇 −1) + (1 − 𝛾)𝑠𝑇 −𝑝.

• Initial Conditions: ℓ0, 𝛽0, 𝑠0, … , 𝑠−𝑝+1.

• Parameters: 𝛼, 𝛽, 𝛾 ∈ [0, 1], ℓ0, 𝛽0, 𝑠0, … , 𝑠−𝑝+1 ∈ R.

7.2 Exponential Smoothing as a State Space Model
Consider Simple Exponential Smoothing:

• Prediction Equation: 𝑋̂𝑡∣𝑡−1 = ℓ𝑡−1.

• Level Equation: ℓ𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)ℓ𝑡−1.

Re-arranging the level equation gives

ℓ𝑡 = ℓ𝑡−1 + 𝛼(𝑋𝑡 − ℓ𝑡−1⎵⎵⎵⎵
residual 𝜀𝑡

) = ℓ𝑡−1 + 𝛼𝜀𝑡

Also, 𝑋𝑡 = ℓ𝑡−1 + 𝜀𝑡. Therefore, these equations can be reformulated as:

• Prediction Equation: 𝑋𝑡 = ℓ𝑡−1 + 𝜀𝑡.

• Level Equation: ℓ𝑡 = ℓ𝑡−1 + 𝛼𝜀𝑡.

Why is this useful? If we make a parametric assumption on 𝜀𝑡 (e.g., 𝜀𝑡 ∼ 𝒩(0, 𝜎2
𝜀)), then we can use Likelihood

techniques (MLE, AIC, simulation based Prediction Intervals).

Such equations are examples of “State Space” Models:

DEFINITION 7.2.1: State space model

We say 𝑋𝑇 follows a general state space model if:
• Observation Equation: 𝑋𝑡 = 𝐴𝑡𝑌𝑡 + 𝜀𝑡 where 𝐴𝑡 is the measurement matrix, 𝑌𝑡 is the state

vector (unobserved), and 𝜀𝑡 is an observation error.
• State Equation: 𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝑊𝑡.
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𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1𝐴𝑡−1

𝐴𝑡

𝐴𝑡+1

𝜀𝑡 and 𝑊𝑡 are white noise terms that may depend on each other.

EXAMPLE 7.2.2: State Space Models

• AR(1): 𝑋𝑡 = 𝑌𝑡 where 𝑌𝑡 = 𝜙𝑌𝑡−1 + 𝑊𝑡 where 𝑊𝑡 ∼ strong white noise.
• Simple Exponential Smoothing:

𝑋𝑡 = 𝑌𝑡−1 + 𝜀𝑡

𝑌𝑡 = 𝑌𝑡−1 + 𝛼𝜀𝑡

where 𝜀𝑡 ∼ strong white noise.
All ARMA and Exponential Smoothing models can be written in state-space form.

Parameter Estimation and Model Selection using State-Space Formulation
• 𝑋𝑡 = ℓ𝑡−1 + 𝜀𝑡.

• ℓ𝑡 = ℓ𝑡−1 + 𝛼𝜀𝑡.

• 𝜀𝑡 ∼ 𝒩(0, 𝜎2
𝜀).

• Initial Condition: ℓ0.

ℒ(𝑋1, … , 𝑋𝑇; 𝛼, ℓ0, 𝜎2
𝜀) =

𝑇
∏
𝑖=1

ℒ(𝑋𝑖 ∣ 𝑋𝑖−1, … , 𝑋1; 𝛼, ℓ0, 𝜎2
𝜀)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

𝒩(ℓ𝑖−1(𝛼,ℓ0),𝜎2
𝜀)

Likelihood can be maximized numerically, and we use this to calculate AIC/BIC.

7.3 Multiplicative Exponential Smoothing Models
Standard Exponential Smoothing has “additive” errors, in the sense that

𝑋𝑡 = ℓ𝑡−1 + 𝜀𝑡

ℓ𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)ℓ𝑡−1

Therefore, 𝜀𝑡 = 𝑋𝑡 − ℓ𝑡−1.

We can also formulate exponential smoothing in terms of “multiplicative” errors, in the sense that

𝜀𝑡 = 𝑋𝑡−1 − ℓ𝑡−1
ℓ𝑡−1
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where we note that the error is relative to the previous level. Therefore,

𝑋𝑡 = ℓ𝑡−1(1 + 𝜀𝑡)

ℓ𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)ℓ𝑡−1 = 𝛼𝜀𝑡ℓ𝑡−1 + 𝛼ℓ𝑡−1 + (1 − 𝛼)ℓ𝑡−1 = ℓ𝑡−1(1 + 𝛼𝜀𝑡)

Why consider multiplicative errors? It is important to note that since the level follows the same exponential
smoothing equation, the forecasts from multiplicative and additive error models will be the same. The
difference arises from how uncertainty/error propagates in the model.

• Additive: 𝑋̂𝑇 +1 = ℓ𝑇 + ∑𝑇 +ℎ
𝑗=𝑇 +1 𝜀𝑗 where we note that the MSE scales like ℎ.

• Multiplicative: 𝑋̂𝑇 +ℎ = ℓ𝑇 ∏𝑇 +ℎ
𝑗=𝑇 +1(1 + 𝜀𝑗) where we note that the MSE (variance) is scaling like

(E[(1 + 𝜀0)2])
ℎ

which could grow very quickly as ℎ → ∞.

Multiplicative Linear + Trend and Holt Winters
Linear + Trend State Space Formulation:

𝜀𝑡 = 𝑋𝑡 − (ℓ𝑡−1 + 𝑏𝑡−1)
ℓ𝑡−1 + 𝑏𝑡−1

𝑋𝑡 = (ℓ𝑡−1 + 𝑏𝑡−1)(1 + 𝜀𝑡)

ℓ𝑡 = (ℓ𝑡−1 + 𝑏𝑡−1)(1 + 𝛼𝜀𝑡)

𝑏𝑡 = 𝑏𝑡−1 + 𝛽(ℓ𝑡−1 + 𝑏𝑡−1)𝜀𝑡

where 𝜀𝑡 ∼ 𝒩(0, 𝜎2
𝜀).

Multiplicative Seasonal Exponential Smoothing
Let 𝑝 be the seasonal period.

𝑋𝑡 = (ℓ𝑡−1 + 𝑏𝑡−1)𝑠𝑡−𝑝(1 + 𝜀𝑡)

ℓ𝑡 = (ℓ𝑡−1 + 𝑏𝑡−1)(1 + 𝛼𝜀𝑡)

𝑏𝑡 = 𝑏𝑡−1 + 𝛽(ℓ𝑡−1 + 𝑏𝑡−1)𝜀𝑡

𝑠𝑡 = 𝑠𝑡−𝑝(1 + 𝛾𝜀𝑡)

When to use Additive versus Multiplicative
Seasonal Exponential Smoothing Models:

(1) Multiplicative models imply that as the level increases (decreases) the seasonal fluctuations increase
(decrease). Additive models suggest seasonal fluctuations remain constant as trend fluctuations.

Seasonal Fluctuations ↑ as Level ↑ ⟹ Multiplicative.

(2) Use AIC/BIC: The AIC can be evaluated for each state-space model and compared.
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7.4 Exponential Smoothing Model Selection
Given the state-space formulation of exponential smoothing and the use of MLE to estimate the parameters,
it is common to use AIC to choose among competing Exponential Smoothing (including additive versus
multiplicative) models. Other options include:

• Cross-validation.

• Residual Analysis (white noise testing).

Prediction Intervals
Using the state-space formulation, valid prediction intervals may be computed using simulation.

EXAMPLE 7.4.1: Simple Exponential Smoothing

𝑋̂𝑇 +1∣𝑇 = ̂ℓ𝑇

State-space formula:
𝑋̂𝑇 +1 ≅ ̂ℓ𝑇 + 𝜀𝑇 +1⎵

𝒩(0,𝜎2
𝜀)

(1) Estimate

𝜎̂2
𝜀 = 1

𝑇 − 1

𝑇
∑
𝑗=2

(𝑋𝑗 − ̂ℓ𝑇 −1)2

(2) Simulate
𝑋̂(𝑏)

𝑇 +1∣𝑇 = ̂ℓ𝑇 + 𝜀(𝑏)
𝑇 +1⎵

𝒩(0,𝜎̂2
𝜀)

(3) Use 5% and 95% sample quantiles of 𝑋(𝑏)
𝑇 +1∣𝑇, 𝑏 = 1, … , 𝐵 as prediction intervals.

REMARK 7.4.2

In many cases, the prediction MSE assuming 𝜀𝑡 ∼ 𝒩(0, 𝜎2
𝜀) can be computed explicitly. See § 7.7 of HA.

An important consideration in applying this approach is that 𝜀𝑡 should behave like Gaussian white noise. We
can check this using a residual analysis.

• White noise tests, ACF plots.

• Quantile-Quantile plot for Normality.

7.5 J and J Exponential Smoothing Forecast
[R Code] J and J Exponential Smoothing Forecast

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/7.5 - J and J Exponential Smoothing Forecast.R
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8.1 Neural Network Autoregression

Input 1

Input 2

Input 3

Input 4

Input Layer
(Covariates/Predictors)

Hidden Layer

"Neuron's"

Output Layer

Prediction

Figure 8.1: Simple Neural Network “Architecture”

It’s possible to have several hidden layers and multiple neurons in each hidden layer.

Any particular layer in the neural network regression, the inputs are mapped to the neurons in the hidden
layer using a simple linear transformation: inputs are mapped to the 𝑗th neuron linearly. The value taken on
the 𝑗th neuron is

𝑧𝑗 = 𝑏𝑗 +
4

∑
𝑖=1

𝑤𝑖𝑗𝑥𝑖

where 𝑏𝑗 is a function, 𝑥𝑖 is the 𝑖th input, and 𝑤𝑖𝑗 are the weights.

To calculate the inputs to the next layer, a non-linear transformation is applied. For example, using the sigmoid
function:

𝑆(𝑧) = 1
1 + 𝑒−𝑧

87
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The final model is a complex non-linear function of the inputs.

Neural Network AR
• Input layer: 𝑋𝑡, … , 𝑋𝑡−𝑝.

• Output layer: 𝑋𝑡+1.

A neural network model with 𝑘 hidden states (assuming one hidden layer) we call a NNAR(𝑝, 𝑘) model.

REMARK 8.1.1

If 𝑘 = 0, then NNAR(𝑝) = AR(𝑝). The inputs are mapped linearly to the outputs.

Seasonal Neural Network AR
• Input layer: 𝑋𝑡, … , 𝑋𝑡−𝑝, 𝑋𝑡−𝑚, 𝑋𝑡−𝑃𝑚

where 𝑚 is the seasonal lag.

• Output layer: 𝑋𝑡+1.

We call this a NNSAR(𝑝, 𝑘, 𝑃 )𝑚 model.

The model selection of choosing 𝑘, 𝑝, and 𝑃 can be carried out using cross-validation where the weights are
estimated using ordinary least squares.

Prediction Intervals
If 𝑿𝑡 = (𝑋𝑡, … , 𝑋𝑡−𝑝, 𝑋𝑡−𝑚, … , 𝑋𝑡−𝑃𝑚

)⊤ denotes the vector of predictors, then we can posit an additive
stochastic model for 𝑋𝑡+1 as

𝑋𝑡+1 = 𝑓(𝑿𝑡) + 𝜀𝑡+1

where 𝑓 is the neural network.

By calculating the residuals ̂𝜀𝑡 = 𝑋𝑡 − ̂𝑓(𝑿𝑡), prediction intervals can be estimated using the bootstrap

𝑋(𝑏)
𝑇 +1 = ̂𝑓(𝑿𝑇) + ̂𝜀(𝑏)

𝑇 +1 (𝑏 = 1, … , 𝐵)

We can then construct a prediction interval by using the empirical quantiles from the simulated distribution of
the forecast 1-step ahead. This process can be iterated multiple times to produce forecasts as well as prediction
intervals for forecasts at longer time horizons.

[R Code] Neural Network Autoregression

8.2 Comparing Various Forecasting Methods
• [R Code] Comparing Various Forecasting Methods

• The M3-Competition: Results, Conclusions and Implications

8.3 Conditional Heteroscedasticity
Hetero⎵
different

- scedasticity⎵⎵⎵⎵⎵
variance

Hetero⎵
same

- scedasticity⎵⎵⎵⎵⎵
variance

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/8.1 - Neural Network Autoregression.R
https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/8.2 - Comparing Various Forecasting Methods.R
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EXAMPLE 8.3.1

If 𝑋𝑡 is weakly stationary, then 𝑋𝑡 is “homoscedastic” in the sense that V(𝑋𝑡) = 𝜎2
𝑋 does not change

over time.

DEFINITION 8.3.2: Heteroscedastic

We say a time series 𝑋𝑡 is heteroscedastic if V(𝑋𝑡) = 𝜎2
𝑋,𝑡; that is, the variance depends on 𝑡 and

changes at some points.

REMARK 8.3.3

Heteroscedastic time series are not stationary.

Asset price data terminology: In the context of conditionally heteroscedastic time series, we often consider
asset price or “financial” time series. Suppose 𝑋𝑡 = price of an asset at time 𝑡.

DEFINITION 8.3.4: Returns, Log-returns

If 𝑋𝑡 is the value of an asset at time 𝑡, then the return (relative gain) 𝑌𝑡 of the asset at time 𝑡 is

𝑌𝑡 = 𝑋𝑡 − 𝑋𝑡−1 = ∇𝑋𝑡

Furthermore, the log-returns of a positive asset price series 𝑋𝑡 are

𝑌𝑡 = log( 𝑋𝑡
𝑋𝑡−1

) = log(𝑋𝑡) − log(𝑋𝑡−1)

REMARK 8.3.5

“Volatility” ⟺ “Variance”.

[R Code] ARCH and GARCH Introduction

A common observation, especially prominent with financial and asset price data, is that periods of volatility or
heteroscedastic tend to cluster.

Why? Big “shocks” cause volatile periods, that further propagate volatility until things “calm down.”

ARMA and linear time series models are not useful for capturing this phenomenon as we will see in the next
example.

EXAMPLE 8.3.6

Let 𝑋𝑡 ∼ AR(1); that is, 𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑊𝑡 where |𝜙| < 1.

E[𝑋𝑡 | 𝑋𝑡−1, 𝑋𝑡−2, …] = 𝜙𝑋𝑡−1

ARMA models “model” the conditional mean 𝑋𝑡−1, 𝑋𝑡−2, ….

V(𝑋𝑡 | 𝑋𝑡−1, 𝑋𝑡−2, …) = 𝜎2
𝑊

𝑋𝑡−1, 𝑋𝑡−2, … leave the variance untouched.

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/8.3 - ARCH and GARCH Introduction.R
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DEFINITION 8.3.7: Conditionally heteroscedastic

We say a time series 𝑋𝑡 is conditionally heteroscedastic if

V(𝑋𝑡 | 𝑋𝑡−1, 𝑋𝑡−2, …) = 𝜎2
𝑋,𝑡

that is, the variance changes with 𝑡.

It’s possible to have a time series 𝑋𝑡 that’s homoscedastic, but is also conditionally heteroscedastic.

8.4 ARCH and GARCH Models
DEFINITION 8.4.1: Autoregressive conditionally heteroscedastic (ARCH)

Let 𝑊𝑡 be a unit variance strong white noise; that is, E[𝑊𝑡] = 0 and V(𝑊𝑡) = 1. We say 𝑋𝑡 follows an
autoregressive conditionally heteroscedastic (ARCH) model if there exists parameters 𝜔 > 0, 𝛼1 ≥ 0
such that 𝑋𝑡 = 𝜎𝑡𝑊𝑡 where

𝜎2
𝑡 = 𝜔 + 𝛼1𝑋2

𝑡−1

where 𝜎2
𝑡 is the conditional variance and 𝑊𝑡 is a white noise.

REMARK 8.4.2

ARCH is from Robert Engle, 1982.

DEFINITION 8.4.3: Autoregressive conditionally heteroscedastic [ARCH(𝑝)]

We say 𝑋𝑡 follows an autoregressive conditionally heteroscedastic model of order 𝑝, if 𝑊𝑡 is a strong
white noise with E[𝑊 2

𝑡 ] = 1 and
𝑋𝑡 = 𝜎𝑡𝑊𝑡

𝜎2
𝑡 = 𝜔 +

𝑝

∑
𝑗=1

𝛼𝑗𝑋2
𝑡−𝑗

where 𝑝 > 0, 𝜔 > 0, and 𝛼𝑗 ≥ 0 for 𝑗 = 1, … , 𝑝. We write 𝑋𝑡 ∼ ARCH(𝑝).

REMARK 8.4.4

(1) 𝜎2
𝑡 is called the “conditional variance” or “volatility.” Imagine that there exist a representation

𝑋𝑡 = 𝑔(𝑊𝑡, … , 𝑊𝑡−1) (stationary process satisfying the ARCH model). Then, for example, in the
ARCH(1) case,

𝜎2
𝑡 = 𝜔 + 𝛼1𝑋2

𝑡−1 = 𝑔𝜎(𝑊𝑡−1𝑊𝑡−2, …)

Therefore,
V(𝑋𝑡 | 𝑊𝑡−1, 𝑊𝑡−2, …) = V(𝜎𝑡𝑊𝑡 | 𝑊𝑡−1, …) = 𝜎2

𝑡 V(𝑊𝑡) = 𝜎2
𝑡

V(𝑊𝑡) = 1 identifies 𝜎2
𝑡 as conditional variance.

(2) Engle won the Nobel Prize in economics in part for “methods of analyzing economic time series
with time varying volatility (ARCH)” in 2003.

(3) One problem noted early on was that ARCH(𝑝) models required large orders of 𝑝 to model asset
returns which suggested generalizing the model.
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DEFINITION 8.4.5: Generalized autoregressive conditional heteroskedasticity (GARCH)

We say 𝑋𝑡 follows a generalized autoregressive conditional heteroskedasticity (GARCH) model if
𝑊𝑡 is unit variance strong white noise and

𝑋𝑡 = 𝜎𝑡𝑊𝑡

𝜎2
𝑡 = 𝜔 +

𝑝

∑
𝑗=1

𝛼𝑗𝑋2
𝑡−𝑗 +

𝑞

∑
𝑘=1

𝛽𝑘𝜎2
𝑡−𝑘

where 𝑞 ≥ 0, 𝑝 > 0, 𝜔 > 0, 𝛼𝑗 ≥ 0 for 𝑗 = 1, … , 𝑝, and 𝛽𝑘 ≥ 0 for 𝑘 = 1, … , 𝑞. We write 𝑋𝑡 ∼
GARCH(𝑝, 𝑞).

REMARK 8.4.6

The GARCH(𝑝, 𝑞) model was proposed by Bollerslev (1986).

REMARK 8.4.7

• GARCH(𝑝, 0) ≡ ARCH(𝑝).
• GARCH(0, 0) is a white noise.

PROPOSITION 8.4.8: Properties of GARCH

Suppose for the moment that there exists “a stationary and causal time series 𝑋𝑡 satisfying the GARCH(𝑝, 𝑞)
model,” 𝑋𝑡 = 𝑔(𝑊𝑡, 𝑊𝑡−1, …) ⟹ 𝜎2

𝑡 = 𝑔𝜎(𝑊𝑡−1, 𝑊𝑡−2, …), then
(1) E[𝑋𝑡] = E[𝜎𝑡]E[𝑊𝑡] = 0 since 𝜎𝑡 and 𝑊𝑡 are independent.

𝛾𝑋(ℎ) = E[𝑋𝑡+ℎ𝑋𝑡] = E[𝜎𝑡+ℎ𝑊𝑡+ℎ𝜎𝑡𝑊𝑡] = 0

since 𝑊𝑡+ℎ is independent of the rest. Therefore, GARCH series have mean zero and are serially
uncorrelated by construction.

(2) Suppose 𝑋𝑡 ∼ ARCH(1).

𝑋2
𝑡 = 𝜎2

𝑡 𝑊 2
𝑡

= 𝜎2
𝑡 (𝑊 2

𝑡 + 1 − 1)
= 𝜎2

𝑡 + (𝑊 2
𝑡 − 1)

= 𝜔 + 𝛼1𝑋2
𝑡−1 + 𝜎2

𝑡 (𝑊 2
𝑡 − 1)

Now, note that 𝜎2
𝑡 = 𝑔(𝑊𝑡−1, 𝑊𝑡−2, …), and 𝑊 2

𝑡 − 1 is a mean zero random variable. Hence, the last
term is a weak white noise.
Therefore, 𝑋2

𝑡 ∼ AR(1) process (weak white noise innovations).
(3) In general, if 𝑋𝑡 ∼ GARCH(𝑝, 𝑞), then 𝑋2

𝑡 follows an ARMA model with weak white noise innovations.

𝑋𝑡 ∼ GARCH(𝑝, 𝑞) ⟹ 𝑋2
𝑡 is serially correlated (ARMA).

[R Code] ARCH and GARCH Models

8.5 Stationarity of GARCH Models
Suppose 𝑋𝑡 ∼ GARCH(𝑝, 𝑞) model.

Question: Under what conditions on 𝜔, 𝛼1, … , 𝛼𝑝, 𝛽1, … , 𝛽𝑝, does a stationary process {𝑋𝑡}𝑡∈Z satisfy these
questions?

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/8.4 - ARCH and GARCH Update.R
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REMARK 8.5.1

Suppose a stationary solution exists that is a causal Bernoulli shift; that is,

𝑋𝑡 = 𝑔(𝑊𝑡, 𝑊𝑡−1, …) ⟹ 𝜎2
𝑡 = 𝑔𝜎(𝑊𝑡−1, 𝑊𝑡−2, …)

If V(𝑋𝑡) < ∞, note
V(𝑋𝜎) = V(𝜎𝑡𝑊𝑡) = E[𝜎2

𝑡 𝑊 2
𝑡 ] = E[𝜎2

𝑡 ] = 𝜎2
𝑋

Using the GARCH recursion:

E[𝜎2
𝑡 ] = 𝜔 +

𝑝

∑
𝑗=1

𝛼𝑗 E[𝑋2
𝑡−𝑗] +

𝑞

∑
𝑘=1

𝛽𝑘 E[𝜎2
𝑡−𝑘]

⟹ 𝜎2
𝑋 = 𝜔 +

𝑝

∑
𝑗=1

𝛼𝑗𝜎2
𝑋 +

𝑞

∑
𝑘=1

𝛽𝑘𝜎2
𝑋

Solving gives
𝜎2

𝑋 = 𝜔
1 − ∑𝑝

𝑗=1 𝛼𝑗 − ∑𝑞
𝑘=1 𝛽𝑘

Suggests that in order for a solution to exist in 𝐿2, we need at least
𝑝

∑
𝑗=1

𝛼𝑗 +
𝑞

∑
𝑘=1

𝛽𝑘 < 1

(Bollerslev, 1986)

Consider GARCH(1, 1) case; that is,
𝑋𝑡 = 𝜎𝑡𝑊𝑡

𝜎2
𝑡 = 𝜔 + 𝛼𝑋2

𝑡−1 + 𝛽𝜎2
𝑡−1

In order to get a stationary solution for 𝑋𝑡 that satisfies 𝑋𝑡 = 𝜎𝑡𝑊𝑡, we need a stationary casual variance
process.

Let 𝑓(𝑧) = 𝛼𝑧2 + 𝛽. Iterate GARCH recursion:

𝜎2
𝑡 = 𝜔 + 𝛼𝑋2

𝑡−1 + 𝛽𝜎2
𝑡−1

= 𝜔 + 𝛼(𝜎2
𝑡−1𝑊 2

𝑡−1) + 𝛽𝜎2
𝑡−1

= 𝜔 + (𝛼𝑊 2
𝑡−1 + 𝛽)𝜎2

𝑡−1

= 𝜔 + 𝑓(𝑊𝑡−1)(𝜔 + 𝛼𝑋2
𝑡−2 + 𝛽𝜎2

𝑡−2)
= 𝜔 + 𝜔𝑓(𝑊𝑡−1) + 𝑓(𝑊𝑡−1)(𝛼𝑋2

𝑡−2 + 𝛽𝜎2
𝑡−2)

= 𝜔 + 𝜔𝑓(𝑊𝑡−1) + 𝜔𝑓(𝑊𝑡−1)𝑓(𝑊𝑡−2) + 𝑓(𝑊𝑡−1)𝑓(𝑊𝑡−2)(𝛼𝑋2
𝑡−3 + 𝛽𝑡−3𝜎2

𝑡−3)
⋮

= 𝜔(1 +
∞

∑
𝑖=1

𝑖
∏
𝑗=1

𝑓(𝑊𝑡−𝑗))

= 𝑔𝜎(𝑊𝑡−1, 𝑊𝑡−2, …)

Posit solution

𝜎2
𝑡 = 𝜔(1 +

∞
∑
𝑗=1

𝑗

∏
𝑖=1

𝑓(𝑊𝑡−𝑖))

Question: When is this series well-defined?
𝑗

∏
𝑖=1

𝑓(𝑊𝑡−𝑖) = exp{
𝑗

∑
𝑖=1

log(𝑓(𝑊𝑡−𝑗))}
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Now, note that ∑𝑗
𝑖=1 log(𝑓(𝑊𝑡−𝑗)) is a random walk. Therefore,

𝑗

∑
𝑖=1

log(𝑓(𝑊𝑡−𝑗)) →
⎧{
⎨{⎩

+∞ with probability 1 if E[log(𝑓(𝑊0))] > 0
−∞ with probability 1 if E[log(𝑓(𝑊0))] < 0
oscillates between −∞ and +∞ if E[log(𝑓(𝑊0))] = 0

The good case is when E[log(𝑓(𝑊0))] < 0, and it causes the terms to tend to zero fast.

THEOREM 8.5.2

A stationary solution 𝑋𝑡 exists to the GARCH(1, 1) equations if and only if

𝛾 = E[log(𝛼𝑊 2
0 + 𝛽)] < 0 [Top Lyapunov Exponent]

The solution is of the form
𝑋𝑡 = 𝜎𝑡𝑊𝑡

𝜎2
𝑡 = 𝜔(1 +

∞
∑
𝑗=1

𝑗

∏
𝑖=1

(𝛼𝑊 2
𝑡−𝑗 + 𝛽)) = 𝑔(𝑊𝑡−1, 𝑊𝑡−2, …)

where 𝑔 is a function that is not linear; that is, we have a non-linear time series.

REMARK 8.5.3

(1) If 𝛾 < 0, 𝜔 = 0 forces 𝑋𝑡 ≡ 0. Therefore, we will normally assume 𝜔 > 0.
(2) The condition 𝛾 = E[log(𝛼𝑊 2

0 + 𝛽)] < 0 depends on the distribution of 𝑊𝑡.
(3) A sufficient condition is 𝛼1 + 𝛽1 < 1.

Proof of Remark 8.5.3 (3)

Jensen’s Inequality: If 𝑓 ∶ R → R is convex, then

𝑓(E[𝑋]) ≤ E[𝑓(𝑋)]

and the opposite holds if 𝑓 is concave. We note that log(𝑥) is concave, hence

E[log(𝛼𝑊 2
0 + 𝛽)] ≤ log(E[𝛼𝑊 2

0 + 𝛽]) = log(𝛼 + 𝛽) < 0

only when 𝛼 + 𝛽 < 1.

REMARK 8.5.4: Second-order Stationarity of GARCH(1, 1) Equation

If 𝛼1 + 𝛽1 > 1, we have seen that V(𝑋𝑡) is not well-defined. If 𝛼1 + 𝛽1 < 1, then

E[𝜎2
𝑡 ] = E[ 𝜔

1 − 𝛼 − 𝛽
] < ∞

Assuming 𝛼1 +𝛽1 < 1, then we know a stationary solution exists and in this case, 𝑋𝑡 is weakly stationary
and is a weak white noise.

𝛾𝑋(ℎ) = E[𝑋𝑡+ℎ𝑋𝑡] = E[𝜎𝑡+ℎ𝑊𝑡+ℎ𝜎𝑡𝑊𝑡] = 0
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Second-order stationarity

region

Very frequently,
when fitting GARCH
models, parameters

are close to

Parameter settings
in this region lead
to stationary
solutions such that

Var

Figure 8.2: GARCH(1, 1) “Region of Stationarity”

8.6 † Stationarity of General GARCH(𝑝, 𝑞)
General conditions exist for when a GARCH(𝑝, 𝑞) process has a strictly stationary solution: Let

𝜏𝑡 = (𝛽1 + 𝛼1𝑊 2
𝑡 , 𝛽2, … , 𝛽𝑞−1) ∈ R𝑞−1

𝜉𝑡 = (𝑋2
𝑡 , 0, … , 0) ∈ R𝑞−1

𝛼 = (𝛼2, … , 𝛼𝑝−1) ∈ R𝑝−2

𝐼𝑐 = 𝑐 × 𝑐 identity matrix.
𝑁 = (𝜔, 0, … , 0) ∈ R𝑝+𝑞−1

𝑌𝑡 = (𝜎2
𝑡 , … , 𝜎2

𝑡−𝑞+1, 𝑋2
𝑡 , … , 𝑋2

𝑡−𝑝+1) ∈ R𝑝+𝑞−1

𝑀𝑡 =
⎡
⎢
⎢
⎣

𝜏𝑡 𝛽𝑞 𝛼 𝛼𝑝
𝐼𝑞−1 0 0 0
𝜉𝑡 0 0 0
0 0 𝐼𝑝−2 0

⎤
⎥
⎥
⎦

∈ R(𝑝+𝑞−1)×(𝑝+𝑞−1)

THEOREM 8.6.1

𝑋𝑡 solves the GARCH(𝑝, 𝑞) equations if and only if

𝑌𝑡 = 𝑀𝑡𝑌𝑡−1 + 𝑁

This representation is known as the Markov representation of the GARCH equations. This defines a first
order vector autoregression for 𝑌𝑡 with (random) matrix coefficients 𝑀𝑡.

Let 𝐴𝑡 be a stationary sequence of random (𝑝 + 𝑞 − 1) × (𝑝 + 𝑞 − 1) matrices, and define, for an arbitrary norm
on matrices ‖ ⋅ ‖ the scalar random variables.

𝑟𝑡 = ‖𝐴𝑡𝐴𝑡−1 … 𝐴1‖

under some relatively mild conditions (ergodicity)

𝛾 = lim
𝑡→∞

[1
𝑡
E[log(𝑟𝑡)]]
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is well-defined and is called the top Lyapunov exponent of the sequence 𝐴𝑡 for 𝑡 ∈ Z. This result is coming
from Ergodic theory in the 1970s.

THEOREM 8.6.2

A stationary solution to the GARCH(𝑝, 𝑞) equations exists if and only if

𝛾 < 0

where 𝛾 is the top Lyapunov exponent of sequence 𝑀𝑡 for 𝑡 ∈ Z appearing in the Markov representation.
When a stationary solution exists, it is causal and unique.

THEOREM 8.6.3: Theorem 1 of Bollerslev (1986)

A necessary and sufficient condition for there to exist a second order stationary solution to the GARCH(𝑝, 𝑞)
equations is that

𝑝

∑
𝑗=1

𝛼𝑗 +
𝑞

∑
ℓ=1

𝛽ℓ < 1

8.7 Identifying GARCH Models
The decision to fit a volatility (GARCH) model to a time series often arises from

(1) Observing volatility (conditional heteroskedasticity) in a series.

(2) Conditional variance forecasting is of specific interest (e.g., risk analysis, financial TS analysis).

If strong serial correlation is observed in the series, one often fits initially an ARMA model, and then fits a
GARCH model to the residuals.

Identifying Serial Correlation
Recall that the normal ACF bounds (blue lines) are constructed based on the assumption that the series is a
strong white noise. A GARCH model is a weak white noise.

ACF Bounds for Weak White Noise
Suppose for example that 𝑋𝑡 ∼ GARCH(1, 1), then

𝛾𝑋(ℎ) = 0 (ℎ ≥ 1)

̂𝛾𝑋(ℎ) ≈ 1
𝑇

𝑇 −ℎ
∑
𝑗=1

𝑋𝑡𝑋𝑡+ℎ ⟹ E[ ̂𝛾𝑋(ℎ)] = 0

V(
√

𝑇 ̂𝛾𝑋(ℎ)) = 1
𝑇

𝑇 −ℎ
∑
𝑗=1

𝑇 −ℎ
∑
𝑘=1

E[𝑋𝑗𝑋𝑗+ℎ𝑋𝑘𝑋𝑘+ℎ]

= 1
𝑇

𝑇 −ℎ
∑
𝑗=1

𝑇 −ℎ
∑
𝑘=1

E[𝜎𝑗𝑊𝑗𝜎𝑗+ℎ𝑊𝑗+ℎ𝜎𝑘+ℎ𝑊𝑘+ℎ𝜎𝑘𝑊𝑘+ℎ]

= 1
𝑇

𝑇 −ℎ
∑
𝑗=1

E[𝑋2
𝑗+ℎ𝑋2

𝑗 ]

≈ E[𝑋2
0𝑋2

−ℎ]
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• If 𝑗 > 𝑘, then 𝑊𝑗+ℎ is independent of the other terms.

• If 𝑘 > 𝑗, then 𝑊𝑘+ℎ is independent of the other terms.

• E[𝑋𝑗 + ℎ2𝑋2
𝑗 ] does not simplify to a product 𝜎4

𝑋 since 𝑋2
𝑗+ℎ is correlated with 𝑋2

𝑗 .

THEOREM 8.7.1

If 𝑋𝑡 is a weak white noise (suitably weakly dependent), then
√

𝑇 ̂𝛾𝑋(ℎ)
𝐷

−−−→
𝑇 →∞

𝒩(0,E[𝑋0𝑋2
−ℎ])

REMARK 8.7.2

(1) E[𝑋2
0𝑋2

−ℎ] can be consistently estimated from the sample:

𝜎̂2
ℎ = 1

𝑇

𝑇 −ℎ
∑
𝑗=1

𝑋2
𝑗+ℎ𝑋2

𝑗

Therefore, an approximate (1 − 𝛼) prediction interval for ̂𝜌(ℎ) under the assumption of a weak
white noise is

± 1√
𝑇

𝑧1−𝛼/2
𝜎̂ℎ
̂𝛾(0)

The blue line depends on ℎ due to 𝜎̂ℎ.
(2) Note that

E[𝑋2
0𝑋2

−ℎ] = (E[𝑋2
0 ])2 + Cov(𝑋2

0 , 𝑋2
−ℎ)⎵⎵⎵⎵⎵⎵

GARCH ⟹ Cov(⋅)>0

Hence, in a GARCH setting, the weak white noise intervals for ACF are (often) larger.

[R Code] Identifying GARCH Models

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/8.7 - Identifying GARCH models.R


Chapter 9

Week 9

9.1 Tests for GARCH Models
Conditional heteroscedasticity is characterized by correlation in 𝑋2

𝑡 . Formally, we can use a white noise test to
𝑋2

𝑡 to evaluate if 𝑋𝑡 exhibits conditional heteroscedasticity.

THEOREM 9.1.1: Portmanteau (White Noise) Test of 𝑋2
𝑡

Let ̂𝜌𝑋2(ℎ) denote the empirical ACF of the series 𝑋2
𝑡 for 𝑡 = 1, … , 𝑇. If 𝑋𝑡 is a strong white noise with

E[𝑋4] < ∞, we define

𝑄(𝑇 , 𝐻) = 𝑇
𝐻

∑
ℎ=1

̂𝜌𝑋2(ℎ)
𝐷

−−−→
𝑇 →∞

𝜒2(𝐻)

where 𝐻 is the number of lags we use. If 𝑋𝑡 ∼ GARCH model, then

𝑄(𝑇 , 𝐻)
𝑃

−−−→
𝑇 →∞

∞

The 𝑝-value of test for homoscedasticity versus conditional heteroscedasticity is given by

𝑝 = P(𝜒2(𝐻) ≥ 𝑄(𝑇 , 𝐻))

REMARK 9.1.2

(1) This test has several names in the literature, including “McLeod-Li Test.”
(2) Often, it is applied to the GARCH models in order to evaluate goodness-of-fit of a GARCH model

(and decide on 𝑝 and 𝑞).

[R Code] Tests for GARCH Models

9.2 GARCH Parameter Estimation
Consider ARCH(1) case. We showed that if 𝑋𝑡 ∼ ARCH(1), then 𝑋2

𝑡 ∼ AR(1); that is, 𝑋2
𝑡 = 𝜔 + 𝛼𝑋2

𝑡−1 + 𝑉𝑡,
where 𝑉𝑡 = 𝜎2

𝑡 (𝑊 2
𝑡 − 1) is a weak white noise.

Suggests estimating 𝜔, 𝛼 using least squares.

(𝜔̂, 𝛼) = argmin
𝜔≥0, 0<𝛼<1

𝑇
∑
𝑡=2

[𝑋2
𝑡 − (𝜔 + 𝛼𝑋2

𝑡−1)]2

97

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/9.1 - Tests for GARCH Models.R
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REMARK 9.2.1

This leads to consistent estimation for an ARCH(1) model.

For a general ARCH(𝑝) model, we can also use least squares:

ℒ(𝜶) =
𝑇

∑
𝑗=𝑝+1

[𝑋2
𝑗 − (𝜔 + 𝛼1𝑋2

𝑗−1 + ⋯ + 𝛼𝑝𝑋2
𝑗−𝑝)]2

where 𝜶 = (𝜔, 𝛼1, … , 𝛼𝑝)⊤. Minimized by

𝜶̂ = (𝑋⊤𝑋)−1𝑋⊤𝒀

𝑋 = ⎡⎢
⎣

1 𝑋2
𝑝 ⋯ 𝑋2

1
⋮ ⋮ ⋱ ⋮
1 𝑋2

𝑇 −1 ⋯ 𝑋2
𝑇 −𝑝

⎤⎥
⎦

∈ R(𝑇 −𝑝)×(𝑝+1)

𝒀 = (𝑋2
𝑝+1, … , 𝑋2

𝑇)⊤ ∈ R𝑇 −𝑝

THEOREM 9.2.2: Chapter 7, Francq and Zakoïan

The OLS estimators of the ARCH(𝑝) process are consistent if E[𝑋4
𝑡 ] < ∞, and are

√
𝑇-consistent and

asymptotically Gaussian if E[𝑋8
𝑡 ] < ∞ under “regularity conditions” including

(1) The true ARCH parameters admit a stationary and causal solution.
(2) The innovations 𝑊𝑡 have a non-degenerate distribution.

Quasi-Maximum Likelihood Estimation
Let 𝑋𝑡 ∼ ARCH(1); that is, 𝑋𝑡 = 𝜎𝑡𝑊𝑡 and 𝜎2

𝑡 = 𝜔 + 𝛼𝑋2
𝑡−1.

We make a parametric assumption that 𝑊𝑡 ∼ 𝒩(0, 1). Assuming the model admits a stationary and causal
solution (𝜔 > 0 and 0 ≤ 𝛼 < 1), then

𝑋𝑡 ∣ 𝑋𝑡−1⎵⎵⎵⎵
𝜎2

𝑡 is known

∼ 𝒩(0, 𝜔 + 𝛼𝑋2
𝑡−1)

ℒ(𝜔, 𝛼) =
𝑇

∏
𝑡=2

ℒ(𝜔, 𝛼, 𝑋𝑡 ∣ 𝑋𝑡−1, … , 𝑋1)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
𝒩(0,𝜔+𝛼𝑋2

𝑡−1)

which is maximized numerically.

General GARCH(𝑝, 𝑞) Case

𝑋𝑡 ∣ 𝑋𝑡−1, … , 𝑋1
𝐷≈ 𝑋𝑡 ∣ 𝑋𝑡−1, 𝑋𝑡−2, …⎵⎵⎵⎵⎵⎵

infinte past

∼ 𝒩(0, 𝜎2
𝑡 )

𝜎2
𝑡 = 𝜔 +

𝑝

∑
𝑗=1

𝑎𝑗𝑋2
𝑡−𝑗 +

𝑞

∑
ℓ=1

𝛽ℓ𝜎2
𝑡−ℓ = 𝜎2

𝑡 (𝜔, 𝜶, 𝜷)

ℒ(𝜔, 𝜶, 𝜷) =
𝑇

∏
𝑗=max(𝑝,𝑞)+1

𝑓𝜔,𝜶,𝜷(𝑋𝑗 ∣ 𝑋𝑗−1, … , 𝑋1)

where 𝑓𝜔,𝜶,𝜷(𝑋𝑗 ∣ 𝑋𝑗−1, … , 𝑋1) is the conditional density of 𝒩(0, 𝜎2
𝑗 (𝜔, 𝜶, 𝜷)).
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REMARK 9.2.3

There is a catch to Quasi-Maximum Likelihood Estimation. As the equation

𝜎2
𝑡 = 𝜎2

𝑡 = 𝜔 +
𝑝

∑
𝑗=1

𝑎𝑗𝑋2
𝑡−𝑗 +

𝑞

∑
ℓ=1

𝛽ℓ𝜎2
𝑡−ℓ = 𝜎2

𝑡 (𝜔, 𝜶, 𝜷)

is iterated to calculate the conditional likelihood eventually things arise that are unknown:

{𝑋𝑗 ∶ 𝑗 ≤ 0}

{𝜎2
𝑗 , 𝑗 ≤ 0}

Therefore, we do some initializations:
• 𝜎2

𝑡 = 𝜔 and 𝑋2
𝑡 = 𝜔 for 𝑡 ≤ 0.

• 𝜎2
𝑡 = 𝜔 and 𝑋2

𝑡 = 0 for 𝑡 ≤ 0.
Note: if the series is “long,” the initializations won’t have much of an effect. However, we must be
careful when fitting a GARCH model to short series.

Parameter Constraints:
(𝜔̂, 𝜶̂, ̂𝜷) = argmax

𝜔̂,𝜶̂, ̂𝜷
ℒ(𝜔, 𝜶, 𝜷)

admits a stationary solution.

(1) “Hyper-Pyramid:”

(𝜔, 𝜶, 𝜷) ∈ {𝜔 > 0,
𝑝

∑
𝑖=1

𝛼𝑖 +
𝑞

∑
𝑗=1

𝛽𝑗 < 1, 𝛼𝑖, 𝛽𝑗 ≥ 0}

solution is second-order stationary. Frequently, parameter estimates lie near the boundary (i.e., 𝛼+𝛽 = 1)
Most packages consider this region.

(2) (𝜔, 𝜶, 𝜷): Top Lyapunov exponent < 0. Entire stationary region is searched. Some “better” packages
implement this (e.g., SAS).

THEOREM 9.2.4: Chapter 6, Francq and Zakoïan

If 𝑋𝑡 ∼ GARCH(𝑝, 𝑞) admits a stationary and causal solution, then the Quasi-MLE (QMLE) estimators are
consistent.

• If 𝑊𝑡 ∼ 𝒩(0, 1) (actually, so that QMLE = MLE), then the estimators are efficient (achieve the
smallest variance among consistent estimators).

• If 𝑊𝑡 ≁ 𝒩(0, 1), the QMLE may not be efficient, but it is in several cases.
Takeaway: QMLE estimation is the benchmark of GARCH model parameter estimation.

9.3 GARCH Residuals and Forecasting the Conditional Variance

If 𝑋𝑡 ∼ GARCH(𝑝, 𝑞), then (𝜔, 𝜶, 𝜷) can be estimated using QMLE to obtain (𝜔̂, 𝜶̂, ̂𝜷),

Then, estimates of conditional variance can be computed by:

𝜎̂2
𝑡 = 𝜔̂ +

𝑝

∑
𝑗=1

̂𝛼𝑗𝑋2
𝑡−𝑗 +

𝑞

∑
ℓ=1

̂𝛽ℓ𝜎̂2
𝑡−ℓ 𝑞 + 1 ≤ 𝑡 ≤ 𝑇

𝜎̂2
𝑗 = 𝜔̂ +

min(𝑗,𝑝)

∑
ℓ=1

̂𝛼ℓ𝑋2
𝑗−ℓ 1 ≤ 𝑡 ≤ 𝑞
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GARCH Residuals

𝑋𝑡 = 𝜎𝑡𝑊𝑡 ⟹ 𝑊𝑡 = 𝑋𝑡
𝜎𝑡

(𝜔 > 0)

Therefore, the residuals are given by

𝑊̂𝑡 = 𝑋𝑡
𝜎̂𝑡

Model diagnostics can be applied to 𝑊̂𝑡 to check:

(1) “Whiteness” or “Squared Correlation.”

(2) Normality.

(3) These also may be used in bootstrap procedures.

Forecasting the Conditional Variance
1-step ahead:

𝜎̂2
𝑇 +1 = 𝜔̂ +

𝑝

∑
𝑗=1

̂𝛼𝑗𝑋2
𝑇 −𝑗 +

𝑞

∑
ℓ=1

̂𝛽ℓ𝜎̂2
𝑇 −ℓ

Initializations: 𝑋2
𝑡 = 𝜔̂, 𝜎̂2

𝑡 = 𝜔̂ for 𝑡 ≤ 0.

ℎ-step ahead:

𝜎̂2
𝑇 +ℎ = 𝜔̂ +

𝑝

∑
𝑗=1

̂𝛼𝑗𝑋̂2
𝑇 +ℎ−𝑗 +

𝑞

∑
ℓ=1

̂𝛽ℓ𝜎̂2
𝑇 +ℎ−ℓ

𝑋̂2
𝑡 =

⎧{
⎨{⎩

𝑋2
𝑡 𝑡 ≤ 𝑇

𝜔̂ or
𝜔̂

1 − ∑𝑝
𝑗=1 ̂𝛼𝑗 − ∑𝑞

ℓ=1
̂𝛽ℓ

𝑡 > 𝑇



Chapter 10

Week 10

10.1 Choosing the Orders of a GARCH Model
(1) Use a GARCH(1, 1) model. “We do not find much evidence that the GARCH(1, 1) model is outperformed.”

Hansen, Peter R., and Asger Lunde (2001).

(2) Model Diagnostics: Consider the GARCH residuals

𝑊̂𝑡 = 𝑋𝑡
𝜎̂𝑡

(a) Check for whiteness, BLP test applied for 𝑊̂𝑡, and 𝑊̂ 2
𝑡 (check for residual correlation in the squares).

(b) Plot the ACF of 𝑊̂𝑡 and 𝑊̂ 2
𝑡 .

(3) Use information criteria. If ℒ(𝜔̂, 𝜶̂, ̂𝜷) is the maximized likelihood, then

IC = −2 log(ℒ(𝜔̂, 𝜶̂, ̂𝜷)) + 𝑃(𝑇 , 𝑘)

where 𝑘 = 1 + 𝑝 + 𝑞 and 𝑃(𝑇 , 𝑘) is the penalty term (AIC or BIC).

REMARK 10.1.1: Cross-validation

It is difficult to apply cross-validation in GARCH modelling since 𝜎̂2
𝑡 (object we are modelling) is

unobserved.
Possible cross-validation criterion: Compare 𝑋2

𝑡 to 𝜎̂2
𝑡 (estimated from 𝑋𝑡−1, … , 𝑋1). It is not typical to

do this (although maybe it should be).

[R Code] Choosing the Orders of a GARCH Model

10.2 Value at Risk Forecasting
One common application of GARCH modelling is to forecast the conditional quantile of the loss in price of
financial assets.

DEFINITION 10.2.1: Horizon ℎ loss

Suppose 𝑉𝑡 is the price (value) of an asset at time 𝑡. The horizon ℎ loss is denoted

𝐿𝑡,𝑡+ℎ = −( 𝑉𝑡+ℎ − 𝑉𝑡⎵⎵⎵⎵
horizon ℎ return

)

101

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/10.1 - Choosing the Orders of a GARCH Model.R
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DEFINITION 10.2.2: Value at risk

Let ℱ𝑡 denote all “information” available up to time 𝑡. For example, ℱ𝑡 = 𝑋𝑡, 𝑋𝑡−1, … , 𝑉𝑡, 𝑉𝑡−1, ….
The horizon ℎ value at risk at level 𝛼 is denoted VaR𝑡,ℎ(𝛼), satisfies

P(𝐿𝑡,ℎ > VaR𝑡,ℎ(𝛼) | ℱ𝑡) ≤ 𝛼

In practice, we take
VaR𝑡,ℎ(𝛼) = inf{𝑥 ∶ P(𝐿𝑡,ℎ > 𝑥 | ℱ𝑡) ≤ 𝛼}

That is, VaR𝑡,ℎ(𝛼) is the (1 − 𝛼) conditional quantile of the loss distribution.

REMARK 10.2.3

If 𝐿𝑡,ℎ ∣ ℱ𝑡 is a continuous random variable, then VaR𝑡,ℎ(𝛼) satisfies

P(𝐿𝑡,ℎ > VaR𝑡,ℎ(𝛼)) = 𝛼

EXAMPLE 10.2.4

If 𝐿𝑡,𝑡+ℎ ∣ ℱ𝑡 ∼ 𝒩(𝑚𝑡,ℎ, 𝜎2
𝑡,ℎ), then

VaR𝑡,ℎ(𝛼) = 𝑚𝑡,ℎ + 𝜎𝑡,ℎ𝛷−1(1 − 𝛼)

where
• 𝑚𝑡,ℎ = E[𝐿𝑡,𝑡+ℎ ∣ ℱ𝑡].
• 𝜎2

𝑡,ℎ = V(𝐿𝑡,𝑡+ℎ ∣ ℱ𝑡).
• 𝛷−1 is the standard normal quantile function.

REMARK 10.2.5

Let 𝑟𝑡 = 𝑉𝑡 − 𝑉𝑡−1 be the simple returns, then

𝐿𝑡,𝑡+ℎ = −
𝑡+ℎ

∑
𝑗=𝑡+1

𝑟𝑗 [Telescoping Sum]

Hence, if we can derive a model for {𝑟𝑡}𝑡∈Z (e.g., a GARCH model), we can also obtain a model for
𝐿𝑡,𝑡+ℎ.
Similarly, if 𝑟𝑡 = log(𝑉𝑡/𝑉𝑡−1) = log(𝑉𝑡) − log(𝑉𝑡−1) denotes the log-returns, and 𝑞𝑡(ℎ, 𝑎) is the quantile
of the conditional distribution of 𝑟𝑡+1 + ⋯ + 𝑟𝑡+ℎ, then

VaR𝑡,ℎ(𝛼) = [1 − 𝑒𝑞𝑡(ℎ,𝑎)]𝑉𝑡

“Model for returns/log-returns ⟹ model for loss.”

DEFINITION 10.2.6: RiskMetrics model

Let 𝑟𝑡 denote the returns (or log-returns). The RiskMetrics model is defined by

𝑟𝑡 = 𝜎𝑡𝑊𝑡 𝑊𝑡 ∼ 𝒩(0, 1)
𝜎2

𝑡 = 𝜆𝜎2
𝑡−1 + (1 − 𝜆)𝑟2

𝑡−1 [ETS Model for Conditional Variance]

VaR𝑡,1(𝛼) = {𝜎𝑡+1𝛷−1(𝛼) if returns
[1 − 𝑒𝑞𝑡(ℎ,𝑎)]𝑉𝑡 if log-returns
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The ℎ-step ahead VaR is approximated by

VaR𝑡,ℎ(𝛼) =
√

ℎVaR𝑡,1(𝛼) [
√

ℎ-scaling]

REMARK 10.2.7

(1)
√

ℎ-scaling derives from the assumption that 𝑟𝑡 = 𝑉𝑡 − 𝑉𝑡−1
iid∼ 𝒩(0, 𝜎2). Therefore,

𝐿𝑡,𝑡+ℎ = −
𝑡+ℎ

∑
𝑗=𝑡+1

𝑟𝑗 ∼ 𝒩(0, 𝜎2ℎ) [Somewhat Dubious!]

(2) The RiskMetrics model leads to a degenerate GARCH model (𝜔 = 0). It tends to underestimate
𝜎2

𝑡 .

A General Approach Using GARCH Models
• Step 1: Fit a GARCH model to the returns 𝑟𝑡.

• Step 2: Use the GARCH model to forecast 𝜎̂2
𝑡+1.

• Step 3: Set 𝑞𝑡(1, 𝛼) = a quantile of 𝑟𝑡+1 = 𝜎̂𝑡+1 ̂𝐹 −1(𝛼) where ̂𝐹 is the distribution estimated from the
GARCH residuals:

(a) ̂𝐹 ∼ 𝒩(0, 1) CDF.

(b) ̂𝐹 ∼ 𝑡 distribution, Pareto, etc.

(c) ̂𝐹 ∼ Empirical CDF (Bootstrap).

For ℎ-step ahead VaR forecasting:

• Option 1: Apply
√

ℎ-scaling.

• Option 2: Use the GARCH model to simulate 𝑟(𝑏)
𝑇 +ℎ, … , 𝑟(𝑏)

𝑇 +ℎ, where the errors 𝑊𝑡 are drawn from ̂𝐹. Set
𝑞𝑡(ℎ, 𝛼) = a quantile of ∑𝑡+ℎ

𝑗=𝑡+1 𝑟𝑗 to be the empirical quantile of

𝑇 +ℎ

∑
𝑗=𝑇 +1

𝑟(𝑏)
𝑇 +𝑗 (𝑏 = 1, … , 𝐵)

where 𝐵 is large, (e.g., 𝐵 = 106).

10.3 Backtesting and VaR Forecasts

DEFINITION 10.3.1: Backtesting

Backtesting returns to the practice of testing a predictive models’ accuracy by applying it to historic
data.

REMARK 10.3.2

Backtesting is a fancy finance term for cross-validation.

When backtesting VaR forecasts, we would be looking for:

• Correct Coverage: P(𝐿𝑡,𝑡+ℎ > VaR𝑡,ℎ(𝛼)) ≈ 𝛼.
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• “Tightness/Sharpness to the Data:” If

P(𝐿𝑡,𝑡+ℎ > VaR1
𝑡,ℎ(𝛼)) = P(𝐿𝑡,𝑡+ℎ > VaR2

𝑡,ℎ(𝛼))

then whichever is larger is better.

1-step VaR Backtesting
Let I𝑡+1(𝛼) = I{𝐿𝑡,𝑡+1 > VaR𝑡,1(𝛼)}. We should have

1
𝑇

𝑇
∑
𝑡=1

I𝑡+1(𝛼) ≈ 𝛼

• Historical Data Approach: ̂𝑞𝑡(1, 𝛼) is the 𝛼 empirical quantile of the last 250 returns.

• RiskMetrics: ̂𝑞𝑡(1, 𝛼) = 𝜎̂𝑡+1𝛷−1(𝛼), 𝜎̂𝑡+1 coming from the RiskMetrics “recursion” with 𝜆 = 0.94 and
initialized by variance estimate from previous 250 observations.

• GARCH(1, 1)-Gaussian: ̂𝑞𝑡(1, 𝛼) = 𝜎̂𝑡+1𝛷−1(𝛼), 𝜎̂𝑡+1 coming from GARCH(1, 1) fit.

• Non-parametric GARCH Bootstrap: ̂𝑞𝑡(1, 𝛼) set to be a 𝛼 quantile of simulated 1-step return from
GARCH(1, 1) with errors drawn from GARCH(1, 1) residuals.

[R Code] Backtesting and VaR Forecasts

10.4 Asymptotics of Partial Sums of Stationary Random Variables
Suppose {𝑋𝑡}𝑡∈Z is a strictly stationary time series; that is, E[𝑋𝑡] = 𝜇, and 𝛾𝑋(ℎ) = E[(𝑋𝑡 − 𝜇)(𝑋𝑡+ℎ − 𝜇)].
We denote the estimator for 𝜇 by:

𝑋̄ = 1
𝑇

𝑇
∑
𝑖=1

𝑋𝑖

Note that E[𝑋̄] = 𝜇 and

V(𝑋̄) = 1
𝑇 2

𝑇
∑
𝑗=1

𝑇
∑
𝑖=1

E[(𝑋𝑖 − 𝜇)(𝑋𝑗 − 𝜇)]

= 1
𝑇 2

𝑇 −1
∑

ℎ=1−𝑇
(𝑇 − |ℎ|)𝛾𝑋(ℎ)

≈ 1
𝑇

∞
∑

ℎ=−∞
𝛾𝑋(ℎ) as 𝑇 → ∞

where 𝛾𝑋(ℎ) is called the “long-run” variance of {𝑋𝑡}𝑡∈Z.

THEOREM 10.4.1

Under weak dependence conditions on {𝑋𝑡}𝑡∈Z (e.g., if 𝑋𝑡 is a linear process with ∑∞
ℓ=0 𝜓2

ℓ < ∞), then

√
𝑇(𝑋̄ − 𝜇)

𝐷
−−−→
𝑇 →∞

𝒩(0,
∞

∑
ℎ=−∞

𝛾(ℎ))

Application: Inference for the mean of a stationary time series. Suppose {𝑋𝑡}𝑡∈Z is strictly stationary, E[𝑋𝑡] =
𝜇.

• 𝐻0: 𝜇 = 𝜇0

• 𝐻𝐴: 𝜇 ≠ 𝜇0

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/10.3 - Backtesting and VaR Forecasts.R
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Test statistic:

𝑍𝑇 =
√

𝑇(𝑋̄ − 𝜇0)

√∑∞
ℎ=−∞ 𝛾𝑋(ℎ)

𝐷≈ 𝒩(0, 1) ⟹ 𝑝 = P(|𝑍| > |𝑍𝑇|)

where 𝑍 ∼ 𝒩(0, 1).

Estimating the Long-Run Variance (LRV)

𝜎2
LRV = ∑∞

ℎ=−∞ 𝛾𝑋(ℎ), a natural estimator is ∑𝑇 −1
ℎ=1−𝑇 ̂𝛾𝑋(ℎ). A problem here is that ̂𝛾(𝑇 − 1) is only based on

a pair of observations.

Truncated Long-Run Variance Estimator

𝜎̂2
LRV =

𝐻
∑

ℎ=−𝐻
̂𝛾𝑋(ℎ)

𝐻 is the “bandwidth” or “truncation parameter.” Normally, in order that 𝜎̂2
LRV would be consistent, we take

𝐻 = 𝐻(𝑇 )
𝑇 →∞
−−−→ ∞. So,

𝐻(𝑇 )
𝑇

𝑇 →∞
−−−→ 0

Standard Choices of 𝐻
Default in most R functions that use truncated LRV estimators:

𝐻(𝑇 ) = ⌊4( 𝑇
100

)
1/4

⌋

Another one:

𝐻(𝑇 ) = ⌊12( 𝑇
100

)
1/4

⌋

Dependent 𝑍-test or 𝑡-test

𝑍𝑇 =
√

𝑇(𝑋̄ − 𝜇0)
𝜎̂LRV

More conservative:
𝑝 = P(|𝑡𝑇 −1| > |𝑍𝑇|)

Another one:
𝑝 = P(|𝑍| > |𝑍𝑇|)

Partial Sum Process
Suppose 𝑋1, … , 𝑋𝑇 are i.i.d. with E[𝑋𝑖] = 0 and V(𝑋𝑖) = 𝜎2. Define

𝑆𝑇(𝑥) = 1√
𝑇

⌊𝑇𝑥⌋

∑
𝑖=1

𝑋𝑖 [Partial Sum Process]

By CLT, 𝑆𝑇(1) 𝐷≈ 𝜎𝒩(0, 1) as 𝑇 → ∞. Also,

𝑆𝑇(𝑥)
𝐷

−−−→
𝑇 →∞

𝜎𝑊(𝑥) [Standard Wiener Process or Brownian-Motion]
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THEOREM 10.4.2

If {𝑋𝑡}𝑡∈Z is strictly stationary and suitably weakly dependent, then

𝑆𝑇(𝑥) = 1√
𝑇

⌊𝑇𝑥⌋

∑
𝑡=1

(𝑋𝑡 − 𝜇)
𝐷

−−−→
𝑇 →∞

𝜎LRV𝑊(𝑥)

where
𝜎2
LRV =

∞
∑

ℎ=−∞
𝛾𝑋(ℎ)

10.5 KPSS Test
We are often interested in evaluating:

• 𝐻0: {𝑋𝑡}𝑡∈Z is stationary.

• 𝐻𝐴: {𝑋𝑡}𝑡∈Z is non-stationary.

Other possible alternatives are:

• 𝐻𝐴,1: Change in level:
E[𝑋1] = ⋯ = E[𝑋𝑘∗ ] ≠ E[𝑋𝑘∗+1] = ⋯ = E[𝑋𝑇]

• 𝐻𝐴,2: Trend: 𝑋𝑡 = 𝑓(𝑡) + 𝜀𝑡 where 𝜀𝑡 is stationary.

• 𝐻𝐴,3: Random-Walk [Unit Root]: 𝑋𝑡 = 𝑋𝑡−1 + 𝜀𝑡.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test
Consider

𝑍𝑇(𝑥) = 1√
𝑇

⌊𝑇𝑥⌋

∑
𝑖=1

(𝑋𝑖 − 𝑋̄) = 𝑆𝑇 − ⌊𝑇𝑥⌋
𝑇

𝑆𝑇(1)

where 𝑆𝑇(𝑥) = 1√
𝑇 ∑⌊𝑇𝑥⌋

𝑡=1 (𝑋𝑡 − 𝜇). As we mentioned, fluctuations in 𝑍𝑇(𝑥) as a function of 𝑥 that are “large”
indicate change in the level or random variable.

KPPS𝑇 = Measure of Fluctuations = 1
𝑇𝜎̂2

LRV

𝑇
∑
𝑘=1

𝑍2
𝑇(𝑘/𝑇 )

Under 𝐻0: {𝑋𝑡}𝑡∈Z is strictly stationary and weakly dependent with V(𝑋𝑡) < ∞.

KPSS𝑇 = 1
𝑇𝜎̂2

LRV

𝑇
∑
𝑡=1

𝑍2
𝑇(𝑡/𝑇 ) ≈ ∫

1

0
[𝑍𝑇(𝑥)

𝜎LRV
]

2

𝑑𝑥

𝑍𝑇(𝑥) = 𝑆𝑇(𝑥) − ⌊𝑇𝑥⌋
𝑇

𝑆𝑇(1)
𝐷

−−−→
𝑇 →∞

𝜎LRV[𝑊(𝑥) − 𝑥𝑊(1)]

Define 𝑊(𝑥) − 𝑥𝑊(1) as the Brownian Bridge 𝐵(𝑥). Therefore,

KPSS𝑇
𝐷

−−−→
𝑇 →∞

∫
1

0
𝐵2(𝑥) 𝑑𝑥 [Cramér-Von Mises Distribution]

Under 𝐻𝐴,1 to 𝐻𝐴,3, KPSS𝑇
𝑝

−−−→
𝑇 →∞

∞. If CVM ≔ ∫1
0

𝐵2(𝑥) 𝑑𝑥, then 𝑝 = P(CVM > KPSS𝑇). Small 𝑝 suggest
non-stationarity.
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REMARK 10.5.1

(1) Note that the null hypothesis of the KPSS test is stationarity, and so we only reject if there is strong
evidence against stationarity.
“KPSS test is unlikely to identify series that only have mild non-stationarity.”

(2) Test is powerful against:
• Changes in level.
• Trends.
• Random walk.

(3) Test is not powerful against:
• Heteroscedasticity (change in variance).

[R Code] KPSS Test

10.6 Diebold-Mariano Test
Notice that if we have two models

𝑀1
Forecasts
−−−−−→ 𝑋̂𝑡,1

CV Errors
−−−−−→ ̂𝑒𝑡,1 = 𝑋𝑡 − 𝑋𝑡,1

Loss
−−→ 𝐿̂𝑡,1 = 𝐿( ̂𝑒𝑡,1)

𝑀2 −−−−−→
Forecasts

𝑋̂𝑡,2 −−−−−→
CV Errors

̂𝑒𝑡,2 = 𝑋𝑡 − 𝑋𝑡,2 −−→
Loss

𝐿̂𝑡,2 = 𝐿( ̂𝑒𝑡,2)

where 𝐿(𝑥) = 𝑥2 ⟹ MSE for example.

CV Error = ∑
𝑡∈test sample

𝐿̂𝑡,𝑖

REMARK 10.6.1

Even if the models have the same predictive power, one of them will have “better” cross-validation error.
Question: Is the model “really” better?

Diebold-Mariano (1995) suggested testing

𝐻0: E[𝐿̂𝑡,1 − 𝐿̂𝑡,2] = 0

Statistic: 𝐷 = 𝐿̂𝑡,1 − 𝐿̂𝑡,2 (average loss difference between models).

𝐷̄ = 1
𝑇

𝑇
∑
𝑡=1

𝐷𝑡 [𝑇-length of test sample]

Under the assumption that 𝐷𝑡 is weakly dependent and stationarity, and if 𝐻0 holds, then

DM𝑇 =
√

𝑇𝐷̄
𝜎̂LRV(𝐷)

𝐷
−→ 𝒩(0, 1)

Test of Equivalent Mean Loss:
𝑝 = P(|𝑍| > |DM𝑇|)

[R Code] Diebold-Mariano Test

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/10.5 - KPSS Test.R
https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/10.6 - Diebold Mariano Test.R
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Week 11

11.1 Multivariate Time Series Introduction
So far we have considered the case where {𝑋𝑡}𝑡∈Z, or an observed stretch 𝑋1, … , 𝑋𝑇 are real numbers (take
values in R).

Frequently, we observe multiple time series at the same time. Suppose we observe 𝑑 time series of length
𝑇.

𝑋1,1 ⋯ 𝑋1,𝑇
𝑋2,1 ⋯ 𝑋2,𝑇

⋮ ⋱ ⋮
𝑋𝑑,1 ⋯ 𝑋𝑑,𝑇

Conceptually, we might imagine that what we observe is a vector 𝑿𝑡 = (𝑋1,𝑡, … , 𝑋𝑑,𝑡)⊤ ∈ R𝑑 for 1 ≤ 𝑡 ≤
𝑇.

DEFINITION 11.1.1: Multivariate time series

Consider a vector-valued stochastic process 𝑿𝑡 = (𝑋1,𝑡, … , 𝑋𝑑,𝑡)⊤ ∈ R𝑑, 𝑡 ∈ Z. We call such a process
indexed by the integers, or an observed stretch 𝑿1, … , 𝑿𝑇, a multivariate (vector-valued, 𝑑-variate)
time series.

EXAMPLE 11.1.2

• (𝑋1,𝑡, … , 𝑋𝑑,𝑡)⊤ could denote the log-returns of 𝑑-stocks.
• (𝑋1,𝑡, 𝑋2,𝑡, 𝑋3,𝑡)⊤ could denote the measurements of the position of an object at time 𝑡.

DEFINITION 11.1.3: Mean, Autocovariance matrix (Multivariate)

Consider a multivariate time series {𝑿𝑡}𝑡∈Z of dimension 𝒅. The mean of the process is

𝜇𝑡 = E[𝑿𝑡] = ⎛⎜
⎝

E[𝑋1,𝑡]
⋮

E[𝑋𝑑,𝑡]
⎞⎟
⎠

The autocovariance matrix is

𝛤(𝑡, 𝑠) = E[(𝑿𝑡 − 𝜇𝑡)(𝑿𝑠 − 𝜇𝑠)⊤] ∈ R𝑑×𝑑

where 𝛤(𝑡, 𝑠) encodes the variances/covariances between all coordinates of the time series at times 𝑡
and 𝑠.
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DEFINITION 11.1.4: Weakly stationary, Strictly stationary (Multivariate)

We say a vector-valued time series {𝑿𝑡}𝑡∈Z is weakly stationary if

𝜇𝑡 = E[𝑿𝑡] = 𝝁 [does not depend on 𝑡]

𝛤 (𝑡 + ℎ, 𝑡) = 𝛤(ℎ) [autocovariance only depends on the lag]

We say {𝑿𝑡}𝑡∈Z is strictly stationary if for all ℎ ∈ Z, 𝑚 ∈ N, 𝑖1, … , 𝑖𝑚 ∈ Z, ℬ1, … , ℬ𝑚 ⊆ R𝑑

(“measurable subsets”) we have

P(𝑿𝑖1
∈ ℬ1, … , 𝑿𝑖𝑚

∈ ℬ𝑚) = P(𝑿𝑖1+ℎ ∈ ℬ1, … , 𝑿𝑖𝑚+ℎ ∈ ℬ𝑚)

“Finite dimensional distributions are shift-invariant.”

PROPOSITION 11.1.5: Properties of Multivariate Stationary Processes

• 𝛤(ℎ) = 𝛤(−ℎ)⊤.

𝛤(−ℎ)⊤ = {E[(𝑋𝑡−ℎ − 𝜇)(𝑋𝑡 − 𝜇)⊤]}
⊤

= E[(𝑋𝑡 − 𝜇)(𝑋𝑡−ℎ − 𝜇)⊤]
= E[(𝑿𝑡+ℎ − 𝜇)(𝑿𝑡 − 𝜇)⊤] by weak stationarity
= 𝛤(ℎ)

• By the Cauchy-Schwarz inequality,

|𝛤 (ℎ)[𝑖, 𝑗]| ≤ {𝛤(0)[𝑖, 𝑖]𝛤 (0)[𝑗, 𝑗]}
1/2

– 𝛤(ℎ)[𝑖, 𝑗] is the covariance between 𝑋𝑖,𝑡+ℎ and 𝑋𝑗,𝑡.
– 𝛤(0)[𝑖, 𝑖] is the variance of 𝑋𝑖,0.
– 𝛤(0)[𝑗, 𝑗] is the variance of 𝑋𝑗,0.

DEFINITION 11.1.6: Autocorrelation matrix

The autocorrelation matrix is defined as

𝑅(ℎ)[𝑖, 𝑗] = 𝛤(ℎ)[𝑖, 𝑗]

{𝛤(0)[𝑖, 𝑖]𝛤 (0)[𝑗, 𝑗]}
1/2

REMARK 11.1.7

• 𝛤(ℎ)[𝑖, 𝑖] = 𝛾𝑖(ℎ) is the autocovariance of the component series 𝑋𝑖,𝑡.
• 𝑅(ℎ)[𝑖, 𝑖] is the ACF of the time series 𝑋𝑖,𝑡.

DEFINITION 11.1.8: Cross-covariance, Cross-correlation function

The cross-covariance between series 𝑋1,𝑡 and 𝑋2,𝑡 assumed to be stationary is

𝛾1,2(ℎ) = E[(𝑋1,𝑡+ℎ − 𝜇1)(𝑋2,𝑡 − 𝜇2)] = 𝛤(ℎ)[1, 2]
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The cross-correlation function is

𝜌1,2(ℎ) =
𝛾1,2(ℎ)

[𝛾1(0)𝛾2(0)]
1/2 = 𝑅(ℎ)[1, 2]

DEFINITION 11.1.9: Empirical autocovariance matrix

If 𝑿1, … , 𝑿𝑇 is an observed series of length 𝑇 (assumed to arise from a weakly stationary series), then
the empirical autocovariance matrix is

̂𝛤ℎ = 1
𝑇

𝑇 −ℎ
∑
𝑡=1

(𝑿𝑡+ℎ − 𝑋̄)(𝑿𝑡 − 𝑋̄)⊤

where 𝑋̄ = 1
𝑇 ∑𝑇

𝑡=1 𝑿𝑡.

𝑅̂ℎ = diag[ ̂𝛤 (0)]−1/2 ̂𝛤 (ℎ)diag[ ̂𝛤 (0)]−1/2

THEOREM 11.1.10

If {𝑿𝑡}𝑡∈Z is weakly stationary and suitably weakly dependent, then

∥ ̂𝛤 (ℎ) − 𝛤(ℎ)∥ = 𝒪𝑝( 1√
𝑇

)

where ‖ ⋅ ‖ is any norm on matrices.
If {𝑋1,𝑡} and {𝑋2,𝑡} are each strong white noises with finite variance, then

√
𝑇𝑅̂(ℎ)[1, 2]

𝐷
−−−→
𝑇 →∞

𝒩(0, 1)

Takeaway: The usual “blue lines” [±1.96/
√

𝑇] can be used to measure for “strong cross correlation.”

[R Code] Multivariate Time Series

11.2 Vector Autoregressive and Vector ARMA Models
Suppose {𝑿𝑡}𝑡∈Z is a strictly stationary vector-valued process in R𝑑.

DEFINITION 11.2.1: Vector autoregressive process

We say {𝑿𝑡}𝑡∈Z follows a vector autoregressive process of order 1, denoted VAR(1), if there exists a
matrix 𝐴 ∈ R𝑑×𝑑 so that

𝑿𝑡 = 𝐴𝑿𝑡−1 + 𝑾𝑡

where {𝑾𝑡}𝑡∈Z is a strong white noise in R𝑑; that is, {𝑾𝑡}𝑡∈Z is i.i.d., E[𝑾𝑡] = 𝟎, and V(𝑾𝑡) = 𝛴𝑊,
where 𝛴𝑊 is the covariance matrix of 𝑾𝑡.

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/11.1 - Multivariate Time Series.R
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Stationary Solution to VAR(1)
Suppose 𝐴 ∈ R𝑑×𝑑 satisfies ‖𝐴‖𝑜𝑝 = sup‖𝒙‖=1‖𝐴𝒙‖ < 1 where 𝒙 ∈ R𝑑 and ‖ ⋅ ‖ is the Euclidean Norm. Then,
the VAR recursion is:

𝑿𝑡 = 𝐴𝑿𝑡−1 + 𝑾𝑡

= 𝐴[𝐴𝑿𝑡−2 + 𝑾𝑡−1] + 𝑾𝑡

= 𝐴2𝑿𝑡−2 + 𝐴𝑾𝑡−1 + 𝑾𝑡

⋮

=
𝑀

∑
𝑗=0

𝐴𝑗𝑾𝑡−𝑗 + 𝐴𝑀+1𝑿𝑡−(𝑀+1)

REMARK 11.2.2

For any 𝒚 ∈ R𝑑,

(1) ‖𝐴𝒚‖ = ∥𝐴 𝒚
‖𝒚‖

∥‖𝒚‖ ≤ ‖𝐴‖𝑜𝑝‖𝒚‖

(2) ∥𝐴𝑀𝒚∥ = ‖𝐴𝐴𝑀−1𝒚‖ ≤ ‖𝐴‖𝑜𝑝∥𝐴𝑀−1𝒚∥ ≤ ⋯ ≤ ‖𝐴‖𝑀
𝑜𝑝‖𝒚‖. Therefore,

∥𝐴𝑀+1𝑿𝑡−(𝑀+1)∥ ≤ ‖𝐴‖𝑀+1
𝑜𝑝 ‖𝑿𝑡−(𝑀+1)‖

𝑀→∞
−−−−→ 0

THEOREM 11.2.3

If ‖𝐴‖𝑜𝑝 < 1, there exists a stationary process 𝑿𝑡 ∈ R𝑑 so that

𝑿𝑡 = 𝐴𝑿𝑡−1 + 𝑾𝑡

𝑿𝑡 =
∞

∑
ℓ=0

𝐴ℓ𝑾𝑡−ℓ [vector-valued linear process]

• 𝐴ℓ is well-defined since 𝐴 is a contraction.

DEFINITION 11.2.4: Vector ARMA

We say {𝑿𝑡}𝑡∈Z follows a vector ARMA model of orders 𝑝 and 𝑞 if there exists coefficient matrices
𝐴1, … , 𝐴𝑝, 𝐵1, … , 𝐵𝑞 ∈ R𝑑×𝑑 so that

𝑿𝑡 = 𝐴1𝑿𝑡−1 + ⋯ + 𝐴𝑝𝑿𝑡−𝑝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
VAR

+𝑾𝑡 + 𝐵1𝑾𝑡−1 + ⋯ + 𝐵𝑝𝑾𝑡−𝑞⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
VMA

THEOREM 11.2.5

There exist a stationary and causal solution to the vector ARMA recursion if and only if

det(𝐼 − 𝑨(𝑧)) ≠ 0 (|𝑧| ≤ 1, 𝑧 ∈ C)

where 𝑨(𝑧) = 𝐴1𝒛 + ⋯ 𝐴𝑝𝒛𝑝 is a matrix-valued polynomial.

REMARK 11.2.6

(1) Due to the difficulties of estimating the MA components in even moderate dimensions, it is common
to use pure VAR models.
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(2) Parameter estimation is simple using least squares.

̂𝐴1, … , ̂𝐴𝑝 = argmin
𝐴1,…,𝐴𝑝

𝑇
∑

𝑡=𝑝+1
∥𝑿𝑡 − 𝐴1𝑿𝑡−1 − ⋯ − 𝐴𝑝𝑿𝑡−𝑝∥2

where ‖ ⋅ ‖ is the Euclidean Norm.
(3) Model selection can be conducted using AIC/BIC, cross-validation.

11.3 Other Multivariate Time Series Odds and Ends
As with the VARMA models, many other similar results and models from scalar time series have counterparts
for multivariate time series.

THEOREM 11.3.1: Vector 𝑀-dependent CLT

If {𝑿𝑡}𝑡∈Z is a strictly stationary 𝑀-dependent time series in R𝑑 with E[‖𝑿𝑡‖2] < ∞, then

√
𝑇(𝑋̄ − 𝜇)⎵⎵⎵⎵⎵

Random Variable in R𝑑

𝐷
−→ 𝑮

where 𝑮 is a Gaussian vector in R𝑑 with E[𝑮] = 𝟎 and V(𝑮) = ∑𝑀
ℎ=−𝑀 𝛤ℎ.

Results like this can be extended to suitably weakly dependent processes, e.g.,

𝑿𝑡 =
∞

∑
ℓ=0

𝐴ℓ𝑾𝑡−ℓ

Such results can be used to establish CLT’s for ̂𝛾ℎ, the empirical autocovariance matrix:
√

𝑇( ̂𝛤ℎ − 𝛤ℎ)
𝐷

−−−→
𝑇 →∞

𝐺

where 𝐺 is a mean-zero Gaussian matrix.

Application: Multivariate White Noise/Portmanteau Tests (Hosking, Li and Mcleod,
1980s)
If 𝑋1, … , 𝑋𝑇 is a 𝑑-dimensional time series sampled from a strong white noise process, then

𝑃𝑇 ,𝐻 = 𝑇
𝐻

∑
ℎ=1

trace( ̂𝛤 ⊤
ℎ

̂𝛤 −1
0

̂𝛤ℎ ̂𝛤 −1
0 )

𝐷
−−−→
𝑇 →∞

𝜒2(𝑑2𝐻)

Approximate 𝑝-value of white noise test:

𝑝 = P(𝜒2(𝑑2𝐻) > 𝑃𝑇 ,𝐻)

11.4 VaR Example
[R Code] VaR Example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/11.4 - VaR Example.R
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Week 12

12.1 Multiple Time Series Regression and Transfer Function Mod-
els

Problem
Suppose that we observe a bivariate time series (𝑌𝑡, 𝑋𝑡)1≤𝑡≤𝑇, and we are interested solely in forecasting 𝑌𝑇 +ℎ.
𝑋𝑡 can be thought of as an exogenous or covariate series that we would like to use to improve the forecast of
𝑌𝑡.

Wrinkles on this theme include:

• 𝑌𝑡 is vector-valued.

• 𝑋𝑡 is vector-valued.

• Both 𝑋𝑡 and 𝑌𝑡 are vector-valued.

DEFINITION 12.1.1: ARMAX

𝑌𝑡 is said to follow an ARMAX model (ARMA model with eXogenous variables) if there exists a (strong)
white noise {𝑍𝑡}𝑡∈Z such that

𝑌𝑡 = 𝛽𝑋𝑡 + 𝜙1𝑌𝑡−1 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑍𝑡 + 𝜃𝑍𝑡−1 + ⋯ + 𝜃𝑞𝑍𝑡−𝑞

where 𝛽𝑋𝑡 is the regression on 𝑋𝑡 (contemporaneous). Using the Backshift operator, we may write this
model as:

𝜙(𝐵)𝑌𝑡 = 𝛽𝑋𝑡 + 𝜃(𝐵)𝑍𝑡 ⟹ 𝑌𝑡 = 𝛽
𝜙(𝐵)

𝑋𝑡 + 𝜃(𝐵)
𝜙(𝐵)

𝑍𝑡

DEFINITION 12.1.2: Simple linear regression model

𝑌𝑡 is said to follow a simple linear regression model with ARMA errors if there exists a white noise
sequence {𝑍𝑡}𝑡∈Z so that

𝑌𝑡 = 𝛽𝑋𝑡 + 𝑉𝑡 ⟹ 𝑌𝑡 = 𝛽𝑋𝑡 + 𝜃(𝐵)
𝜙(𝐵)

𝑍𝑡

𝜙(𝐵)𝑉𝑡 = 𝜃(𝐵)𝑍𝑡 ⟹ 𝑉𝑡 = 𝜃(𝐵)
𝜙(𝐵)

𝑍𝑡

where 𝜙(𝐵), 𝜃(𝐵) are 𝑝, 𝑞-degree polynomials respectively.
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DEFINITION 12.1.3: Transfer function model

𝑌𝑡 is said to follow a transfer function model with 𝑋𝑡 if there exist finite degree polynomials 𝛽, 𝜈, 𝜙, 𝜃,
and a strong white noise sequence {𝑍𝑡}𝑡∈Z such that

𝑌𝑡 = 𝛽(𝐵)
𝜈(𝐵)

+ 𝜃(𝐵)
𝜙(𝐵)

𝑍𝑡

EXAMPLE 12.1.4: Full Transfer Function Models

ARMAX and Simple contemporaneous regression models are special examples of full transfer function
models.

REMARK 12.1.5: Non-Stationarity

If a certain degree of differencing is required to make 𝑌𝑡, 𝑋𝑡 stationary, then we write the transfer
function model as:

(1 − 𝐵)𝑑𝑌𝑡 = 𝛽(𝐵)
𝜈(𝐵)

(1 − 𝐵)𝑑𝑋𝑡 + 𝜃(𝐵)
𝜙(𝐵)

𝑍𝑡

• When 𝑑 ≥ 1, 𝛽(𝑧) = 𝛽, 𝜈(𝑧) = 𝜙(𝑧), this is called an ARIMAX model.
• When 𝑑 = 0, 𝛽(𝑧) = 𝛽, 𝜈(𝑧) = 1, 𝜙(𝑧) = (1 − 𝑧)𝑞𝜙⋆(𝑧), this is called a regression model with

ARIMA errors.
• Seasonality can be incorporated by using seasonal lags in the differencing and transfer function

polynomials.

12.2 Fitting and Forecasting Transfer Function Models
Transfer function models:

𝑌𝑡 = 𝛽(𝐵)
𝜈(𝐵)

𝑋𝑡 + 𝜃(𝐵)
𝜙(𝐵)

𝑍𝑡

• Regression model with ARIMA errors:

– 𝛽(𝐵) = 𝛽 where 𝛽 is a constant.

– 𝜈(𝐵) = 1.

– 𝜙(𝐵) = (1 − 𝐵)𝑑𝜙⋆(𝐵).

Two-step estimation:

(1) Estimate ̂𝛽 using ordinary least squares:

argmin
𝛽

𝑇
∑
𝑡=1

(𝑌𝑡 − 𝛽𝑋𝑡)
2

(2) Calculate residuals:
̂𝑉𝑡 = 𝑌𝑡 − ̂𝛽𝑋𝑡

and then fit an ARIMA model to ̂𝑉𝑡. This is what most packages do!

For general transfer function models, the parameters can be estimated by positing a likelihood (usually
Gaussian) for the innovations 𝑍𝑡, or “pre-whitening” the input and output series to identify and estimate the
transfer function, and then fitting an ARIMA model to the residuals.

𝑌𝑡 = 𝛽(𝐵)
𝜈(𝐵)

𝑋𝑡 + 𝑁𝑡 =
∞

∑
𝑗=0

𝑣𝑗𝐵𝑗 ≅
𝑘

∑
𝑗=0

𝑣𝑗𝛽𝑗 where 𝑁𝑡 is ARIMA
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Suppose there exists 𝜃𝑥 and 𝜙𝑥 so that

𝜃𝑥(𝐵)
𝜙𝑥(𝐵)

𝑋𝑡 = 𝛼𝑡 ← white noise (i.e., 𝑋𝑡 ∼ ARIMA)

By then defining

𝛽𝑡 = 𝜃𝑥(𝐵)
𝜙𝑥(𝐵)

𝑦𝑡

𝑁 ⋆
𝑡 = 𝜃𝑥(𝐵)

𝜙𝑥(𝐵)
𝑁𝑡 (still follows ARIMA model)

we get the transfer function equation that

𝛽𝑡 = 𝑉 (𝐵)𝛼𝑡 + 𝑁 ⋆
𝑡 ≅

∞
∑
𝑗=0

𝑣𝑘𝛽𝑗 + 𝑁 ⋆
𝑡

REMARK 12.2.1

If 𝑋𝑡 and 𝑁𝑡 are independent, then 𝛼𝑡 and 𝑊 ⋆
𝑡 are independent. Multiply LHS and RHS by 𝛼𝑡−𝑗, take

expectation.

E[𝛽𝑡𝛼𝑡−𝑗] = 𝑣𝑗𝜎2
𝛼 ⟹ 𝑣𝑗 =

E[𝛽𝑡𝛼𝑡−𝑗]
𝜎2

𝛼
⟹ ̂𝑣𝑗 =

̂E[𝛽𝑡𝛼𝑡−𝑗]
𝜎̂2

𝛼

where E[𝛽𝑡𝛼𝑡−𝑗] is the CCF of 𝛼𝑡 with 𝛽𝑡 at lag 𝑗.

We may then estimate an ARIMA model for the noise:
̂𝑁 ⋆
𝑡 = 𝛽𝑡 − ̂𝑉 (𝐵)𝛼𝑡

Can be reverse-engineered by applying
𝜙𝑥(𝐵)
𝜃𝑥(𝐵)

to estimate the original transfer function model from 𝑌 to 𝑋

(Box-Jenkins, 1970s).

Forecasting Transfer Function Models
Having estimated the parameters, a forecast for 𝑌𝑇 +ℎ can be obtained by:

(1) Forecasting covariate series 𝑋̂𝑇 +ℎ for 𝑗 = 1, … , ℎ.

(2) Inputting forecast covariate series and forecasted noise series (ARIMA forecast) into the transfer function
model.

REMARK 12.2.2

In many cases, the covariate series 𝑋𝑡 does not need to be forecast since it is known in advance.

EXAMPLE 12.2.3

• 𝑋𝑡 is a trend.
• 𝑋𝑡 is a dummy (indicator) variable coding calendar effects:

𝑋𝑡 = {
1 day 𝑡 is a holiday
0 otherwise

12.3 Regression with ARIMA Errors Example
[R Code] Regression with ARIMA Errors Example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/12.3 - Regression with ARIMA Errors Example.R
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12.4 State Space Models and Kalman Filtering and Smoothing
Suppose 𝑌𝑡 ∈ R𝑑, a very good class of models for 𝑌𝑡 are state space models or Dynamic Linear Models.

• Observation Equation:
𝑌𝑡 = 𝐴𝑡𝑋𝑡 + 𝛤𝑢𝑡 + 𝑉𝑡

• State Equation:
𝑋𝑡 = 𝛷𝑋𝑡−1 + 𝜉𝑢𝑡 + 𝑊𝑡 (𝑋𝑡 ∈ R𝑝)

– 𝐴𝑡 is a known design matrix.

– 𝑋𝑡 is a state variable.

– 𝑢𝑡 are exogenous variables.

– 𝑉𝑡 and 𝑊𝑡 are noise.

– 𝑉𝑡 ∼ 𝒩𝑑(0, 𝑅).

– 𝑊𝑡 ∼ 𝒩𝑝(0, 𝑄).

State space models originated in Aerospace and Signal processing research:

EXAMPLE 12.4.1

We are interested in the position 𝑋𝑡 ∈ R3 of a spacecraft. We cannot measure the position exactly, but
we can measure:

𝑌𝑡 = ⎛⎜
⎝

velocity𝑡
azimuth𝑡
altitude𝑡

⎞⎟
⎠

We assume 𝑋𝑡 is related to 𝑌𝑡 through a state space model: 𝑌𝑡 is obtained after linearly transforming
𝑋𝑡 and adding noise.

Every model that we have discussed so far has a state space formulation:

EXAMPLE 12.4.2: ARMA(𝑝, 𝑞) State Space Formulation

• 𝜙(𝐵)𝑌𝑡 = 𝜃(𝐵)𝑊𝑡.
• Let 𝑟 = max(𝑝, 𝑞 + 1).
• 𝜙𝑗 = 0 for 𝑗 > 𝑝 and 𝜃𝑗 = 0 for 𝑗 > 𝑞 where 𝜃0 = 1.

Then, one can check that

𝑌𝑡 = [𝜃𝑟−1, 𝜃𝑟−2, … , 𝜃0]𝑿𝑡 Observation Equation

𝑿𝑡 = ⎛⎜
⎝

𝑋𝑡−𝑟+1
⋮

𝑋𝑡

⎞⎟
⎠

∈ R𝑟

𝑿𝑡+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
⋮ 0 1 ⋮
⋮ ⋮ 0 ⋮
⋮ ⋮ ⋮ ⋮
0 0 0 1
𝜙𝑟 𝜙𝑟−1 𝜙𝑟−2 ⋯ 𝜙1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑿𝑡 +
⎛⎜⎜⎜
⎝

0
⋮
0
1

⎞⎟⎟⎟
⎠

𝑊𝑡−1

which is our State Equation.
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REMARK 12.4.3

ETS, ARIMA, and GARCH models all have state space representations.

Why are state space models nice?

(1) Unifying Framework.

(2) Extra Flexibility/Generality. By specifying design matrices 𝐴𝑡 and exogenous variables 𝑢𝑡, we can handle:

(a) Missing data.

(b) Full transfer function models.

Big Problem with State-Space Representation: Having observed 𝑌𝑡, what can we say about 𝑋𝑡?

Kalman Filter (Rudolf Kalman, 1960s)
• A method for estimating 𝑋𝑡 based in {𝑌𝑠 ∶ 𝑠 ≤ 𝑡} which is an online estimation of 𝑋𝑡.

Kalman Smoothing
• A method to estimate 𝑋𝑡 based on {𝑌𝑠 ∶ 1 ≤ 𝑠 ≤ 𝑇 } which is a retrospective estimation of 𝑋𝑡.

REMARK 12.4.4

If (𝑌𝑡, 𝑋𝑡) follow the state space model with Gaussian innovations, they are jointly Gaussian. Therefore,
the best guess of

(𝑋𝑡 ∣ 𝑌𝑠)𝑠≤𝑡 = E[𝑋𝑡 | 𝑌𝑠 ∶ 𝑠 ≤ 𝑡]

This would be the best in mean-square sense even if (𝑋𝑡, 𝑌𝑡) are not jointly Gaussian.

State Space Model:
𝑌𝑡 = 𝐴𝑡𝑋𝑡 + 𝛤𝑢𝑡 + 𝑉𝑡 (𝑉𝑡 ∼ 𝒩𝑑(0, 𝑅))

𝑋𝑡 = 𝛷𝑋𝑡−1 + 𝜉𝑢𝑡 + 𝑊𝑡 (𝑊𝑡 ∼ 𝒩(0, 𝑄))

Initial conditions: 𝑋0 and 𝑃0 (initial variance of 𝑋0).

Let 𝑋𝑠
𝑡 = E[𝑋𝑡 | 𝑌𝑘 ∶ 𝑘 ≤ 𝑠] and 𝑃 𝑠

𝑡 = E[(𝑋𝑡 − 𝑋𝑠
𝑡 )(𝑋𝑡 − 𝑋𝑠

𝑡 )⊤] where 𝑃 𝑠
𝑡 is the covariance matrix of forecast

error of 𝑋𝑡 based on 𝑋𝑠
𝑡 .

Kalman Filter
𝑋𝑡−1

𝑡 = 𝛷𝑋𝑡−1
𝑡−1 + 𝜉𝑢𝑡

𝑃 𝑡−1
𝑡 = 𝛷𝑃 𝑡−1

𝑡−1 𝛷⊤ + 𝑄

𝑋𝑡
𝑡 = 𝑋𝑡−1

𝑡 + 𝐾𝑡(𝑦𝑡 − 𝐴𝑡𝑋𝑡−1
𝑡 − 𝛤𝑢𝑡)

𝑃 𝑡
𝑡 = [𝐼 − 𝐾𝑡𝐴 − 𝑡]𝑃 𝑡−1

𝑡

where 𝐾𝑡 = 𝑃 𝑡−1
𝑡 𝐴⊤

𝑡 [𝐴𝑡𝑃 𝑡−1
𝑡 𝐴⊤

𝑡 + 𝑅]−1 is the Kalman Gain which defines how much we alter 𝑋𝑡
𝑡 based on

observing the deviation 𝑌𝑡 from 𝐴𝑡𝑋𝑡−1
𝑡 + 𝛤𝑢𝑡.

REMARK 12.4.5

(1) (𝑋𝑡
𝑡 , 𝑃 𝑡

𝑡 ) = 𝑓(𝑋𝑡−1
𝑡−1 , 𝑃 𝑡−1

𝑡−1 ) where 𝑓 is linear. The term (𝑋𝑡−1
𝑡−1 , 𝑃 𝑡−1

𝑡−1 ) says we only have to store and
do the linear algebra with 𝑋𝑡−1

𝑡−1 , 𝑃 𝑡−1
𝑡−1 and 𝑌𝑡 to update state prediction. Can be done in real time.
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(2) Formulas look complicated, but they are quite simple! Just came from calculating

(𝑋𝑡𝑌𝑠)𝑠≤𝑡⎵⎵⎵⎵
Jointly Gaussian

Kalman Smoother
Infer 𝑋𝑡 based on {𝑌𝑠 ∶ 1 ≤ 𝑠 ≤ 𝑇 } with initial conditions 𝑋0 and 𝑃0 for 𝑡 = 𝑇 , 𝑇 − 1, … , (we start from the
end of the series).

𝑋⊤
𝑡−1 = 𝑋𝑡−1

𝑡−1 + 𝐽𝑡−1(𝑋⊤
𝑡 − 𝑋𝑡−1

𝑡 )

𝑃 ⊤
𝑡−1 = 𝑃 𝑡−1

𝑡−1 + 𝐽𝑡−1(𝑃 ⊤
𝑡 − 𝑃 𝑡−1

𝑡 )𝐽⊤
𝑡−1

𝐽𝑡−1 = 𝑃 𝑡−1
𝑡−1 + 𝜙⊤[𝑃 𝑡−1

𝑡 ]−1

REMARK 12.4.6

Estimating of model parameters of state space model can be obtained using MLE.

𝜀𝑡 = 𝑦𝑡 − 𝐴𝑡𝑋𝑡−1
𝑡 − 𝛤𝑢𝑡 ∼ 𝒩(0, 𝑅)

where 𝑋𝑡−1
𝑡 is our best guess of 𝑋𝑡 based on {𝑦𝑠 ∶ 𝑠 ≤ 𝑡 − 1} implicitly a function of parameters.

ℒ(𝜽) =
𝑇

∏
𝑗=1

𝑓𝜀𝑗
(𝜽)

which is maximizing as a function of 𝜽 = (𝑅, 𝑄, 𝜉, 𝛤 , 𝛷)⊤.
• Very difficult optimization problem (Newton-Raphson, EM, MCMC)

Application to Missing Data
Suppose we observe a time series 𝑌𝑡 with missing values, we would like to infer the time series

𝑋𝑡 = {
𝑌𝑡 𝑌𝑡 known
𝑌 ⋆

𝑡 unknown values of 𝑌𝑡 when missing

𝑌𝑡 = 𝐴𝑡𝑋𝑡

𝑋𝑡 ∼ ARIMA (or other) specification thought to model 𝑌𝑡 well.

𝐴𝑡 = {
1 𝑌𝑡 is observed
0 𝑌𝑡 is missing

Infer 𝑋𝑡 using Kalman Smoothing.

12.5 Kalman Smoothing Time Series Imputation Example
[R Code] Kalman Smoothing Time Series Imputation Example

https://github.com/Hextical/university-notes/blob/master/year-3/semester-2/STAT 443/code/12.5 - Kalman Smoothing Time Series Imputation Example.R
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